PERANCANGAN EARLY WARNING SYSTEM (EWS) UNTUK DETEKSI DINI BENCANA BANJIR BERBASIS INTERNET OF THINGS TERINTEGRASI PLATFORM MOBILE APPS DAN WEBSITE

    Luthfi Maulana, - and Resa Pramudita, - (2025) PERANCANGAN EARLY WARNING SYSTEM (EWS) UNTUK DETEKSI DINI BENCANA BANJIR BERBASIS INTERNET OF THINGS TERINTEGRASI PLATFORM MOBILE APPS DAN WEBSITE. S1 thesis, Universitas Pendidikan Indonesia.

    Abstract

    Banjir merupakan bencana alam yang kerap melanda wilayah Indonesia, terutama di daerah rendah dan sekitar aliran sungai. Sistem peringatan dini (Early Warning System/EWS) dibutuhkan untuk memberikan informasi potensi banjir secara cepat dan akurat. Penelitian ini bertujuan merancang sistem EWS berbasis Internet of Things (IoT) yang terintegrasi dengan aplikasi mobile dan website guna meningkatkan kesiapsiagaan masyarakat dan pemerintah. Sistem dirancang menggunakan mikrokontroler ESP32 yang terhubung dengan sensor ultrasonik, sensor hujan, dan sensor aliran air untuk memantau tinggi muka air, intensitas curah hujan, serta debit air secara real-time. Data dikirim ke Firebase dan ditampilkan melalui antarmuka aplikasi Android dan platform web. Pengembangan sistem dilakukan dengan metode Rapid Application Development (RAD) dan diuji menggunakan pengujian alpha dan beta. Hasil pengujian menunjukkan sistem mampu memberikan notifikasi otomatis kurang dari 5 detik setelah mendeteksi kondisi rawan. Uji beta yang melibatkan 100 warga menunjukkan bahwa 91% responden merasa sistem mudah digunakan dan 94% menyatakan informasi yang diberikan sangat membantu dalam mengambil tindakan mitigasi. Sistem ini terbukti efektif dalam mempercepat penyampaian informasi kebencanaan dan meningkatkan respon masyarakat terhadap potensi banjir. Floods are one of the most frequent natural disasters in Indonesia, especially in lowland areas and river basins. An Early Warning System (EWS) is essential for delivering flood risk information quickly and accurately. This study aims to design an IoT-based Early Warning System integrated with a mobile application and website platform to enhance disaster preparedness for both communities and local authorities. The system is built using an ESP32 microcontroller connected to ultrasonic, rainfall, and water flow sensors to monitor water levels, rainfall intensity, and discharge in real-time. Data is transmitted to Firebase and displayed through an Android application and web interface. The system was developed using the Rapid Application Development (RAD) method and evaluated through alpha and beta testing. The results show that the system can automatically send alerts in under 5 seconds after detecting flood indicators. Beta testing involving 100 community respondents revealed that 91% found the system easy to use, and 94% stated that the information provided was helpful in taking preventive measures. The system has proven effective in accelerating disaster information delivery and improving community responsiveness to flood threats.

    [thumbnail of S_PTOIR_2102882_Title .pdf] Text
    S_PTOIR_2102882_Title .pdf

    Download (4MB)
    [thumbnail of S_PTOIR_2102882_Chapter1.pdf] Text
    S_PTOIR_2102882_Chapter1.pdf

    Download (195kB)
    [thumbnail of S_PTOIR_2102882_Chapter2.pdf] Text
    S_PTOIR_2102882_Chapter2.pdf
    Restricted to Staf Perpustakaan

    Download (585kB)
    [thumbnail of S_PTOIR_2102882_Chapter3.pdf] Text
    S_PTOIR_2102882_Chapter3.pdf

    Download (1MB)
    [thumbnail of S_PTOIR_2102882_Chapter4.pdf] Text
    S_PTOIR_2102882_Chapter4.pdf
    Restricted to Staf Perpustakaan

    Download (968kB)
    [thumbnail of S_PTOIR_2102882_Chapter5.pdf] Text
    S_PTOIR_2102882_Chapter5.pdf

    Download (160kB)
    [thumbnail of S_PTOIR_2102882_Appendix.pdf] Text
    S_PTOIR_2102882_Appendix.pdf
    Restricted to Staf Perpustakaan

    Download (3MB)
    Official URL: https://repository.upi.edu/
    Item Type: Thesis (S1)
    Additional Information: ID SINTA Dosen Pembimbing: Resa Pramudita: 6688224
    Uncontrolled Keywords: Early Warning System, Internet of Things, ESP32, Firebase, Banjir. Early Warning System, Internet of Things, ESP32, Firebase, Flood.
    Subjects: L Education > L Education (General)
    T Technology > T Technology (General)
    Divisions: Fakultas Pendidikan Teknik dan Industri > S1 Pendidikan Teknik Otomasi Industri dan Robotika
    Depositing User: Luthfi Maulana
    Date Deposited: 13 Nov 2025 06:52
    Last Modified: 13 Nov 2025 06:52
    URI: http://repository.upi.edu/id/eprint/144373

    Actions (login required)

    View Item View Item