ANALISIS EFISIENSI STRUKTUR BAJA DENGAN SISTEM ECCENTRICALLY BRACED FRAME LINK HORIZONTAL DAN VERTIKAL

(STUDI KASUS: RUMAH SAKIT SUMBER KASIH)

TUGAS AKHIR

Diajukan Untuk memenuhi syarat memperoleh gelar Sarjana Teknik Program Studi Teknik Sipil

oleh:

Chandra Adi Putra Isnianto 2107183

PROGRAM STUDI TEKNIK SIPIL

FAKULTAS PENDIDIKAN TEKNIK DAN INDUSTRI
UNIVERSITAS PENDIDIKAN INDONESIA
BANDUNG

2025

ANALISIS EFISIENSI STRUKTUR BAJA DENGAN SISTEM ECCENTRICALLY BRACED FRAME LINK HORIZONTAL DAN VERTIKAL (STUDI KASUS : RUMAH SAKIT SUMBER KASIH)

Oleh Chandra Adi Putra Isnianto

Sebuah Tugas Akhir yang diajukan untuk memenuhi salah satu syarat memperoleh gelar Sarjana Teknik pada Program Studi Teknik Sipil.

© Chandra Adi Putra Isnianto 2025 Universitas Pendidikan Indonesia Agustus 2025

Hak Cipta dilindungi undang-undang

Tugas Akhir ini tidak boleh diperbanyak seluruhnya atau sebagian, dengan
dicetak ulang, difotokopi, atau cara lainnya tanpa izin dari penulis

LEMBAR PENGESAHAN **TUGAS AKHIR**

ANALISIS EFISIENSI STRUKTUR BAJA DENGAN SISTEM ECCENTRICALLY BRACED FRAME LINK HORIZONTAL DAN VERTIKAL (STUDI KASUS : RUMAH SAKIT SUMBER KASIH)

CHANDRA ADI PUTRA ISNIANTO 2107183

Disetujui dan disahkan oleh pembimbing:

Pembimbing I

Drs. Budi Kudwadi, M.T.

NIP. 196306221990011001

Pembimbing II

NIP. 197112152003122001

Mengetahui,

Ketua Program Studi Teknik Sipil

Dr. Ir. Juang Akbardin, S.T., M.T., IPM., ASEAN.Eng NIP. 19770307 200812 1 001

PERNYATAAN BEBAS PLAGIARISME

Saya yang bertanda tangan di bawah ini:

Nama : Chandra Adi Putra Isnianto

NIM : 2107183

Program Studi: Teknik Sipil

Judul Karya : ANALISIS EFISIENSI STRUKTUR BAJA DENGAN SISTEM

ECCENTRICALLY BRACED FRAME LINK HORIZONTAL DAN VERTIKAL

(STUDI KASUS: RUMAH SAKIT SUMBER KASIH)

Dengan ini menyatakan bahwa karya tulis ini merupakan hasil kerja saya sendiri. Saya menjamin bahwa seluruh isi karya ini, baik sebagian maupun keseluruhan, bukan merupakan plagiarisme dari karya orang lain, kecuali pada bagian yang telah dinyatakan dan disebutkan sumbernya dengan jelas. Jika di kemudian hari ditemukan pelanggaran terhadap etika akademik atau unsur plagiarisme, saya bersedia menerima sanksi sesuai peraturan yang berlaku di Universitas Pendidikan Indonesia.

Bandung, Agustus 2025

Pembuat Pernyataan

Chandra Adi Putra Isnianto

2107183

KATA PENGANTAR

Puji dan syukur, penulis panjatkan kehadirat Tuhan Yang Maha Esa, atas berkat rahmat dan karunia-Nya sehingga penulis mampu menyelesaikan Tugas Akhir yang berjudul "ANALISIS EFISIENSI STRUKTUR BAJA DENGAN SISTEM ECCENTRICALLY BRACED FRAME LINK VERTIKAL DAN HORIZONTAL (STUDI KASUS: RUMAH SAKIT SUMBER KASIH)" tepat pada waktunya. Adapun penyusunan dalam proposal ini banyak pihak yang telah membantu penulis baik secara langsung maupun secara tidak langsung, oleh karena itu penulis ucapkan terima kasih banyak kepada:

- Bapak Drs. Budi Kudwadi, S.T M.T. Sebagai Dosen Pembimbing 1 yang telah meluangkan waktu, tenaga, dan pikiran dalam memberikan bimbingan dalam menyelesaikan Tugas Akhir Ini.
- 2. Ibu Istiqomah, S.T., M.T. Sebagai Dosen Pembimbing 2 yang telah meluangkan waktu, tenaga, dan pikiran dalam memberikan bimbingan dalam menyelesaikan Tugas Akhir Ini.
- 3. Orang tua dan keluarga yang selalu senantiasa mendukung dan mendoakan penulis sehingga laporan ini dapat terselesaikan.
- 4. Semua pihak yang telah membantu yang tidak dapat disebutkan satu per satu.

Penulis menyadari bahwa Proposal ini masih jauh dari sempurna. Oleh karena itu, penulis mengharapkan kepada pembaca untuk memberikan kritik dan saran yang bersifat membangun untuk kesempurnaan proposal tugas akhir ini. Penulis berharap agar proposal ini dapat bermanfaat bagi penulis sendiri maupun pembaca yang mempelajarinya.

Bandung, September 2025

Penulis

UCAPAN TERIMA KASIH

Dalam proses penyusunan tugas akhir ini, penulis menemukan berbagai macam hambatan. Penulis menyadari banyak bantuan, bimbingan, dan dukungan yang didapatkan sehingga Tugas Akhir ini dapat diselesaikan dengan baik. Dengan penuh rasa syukur dan hormat, penulis ingin menyampaikan terima kasih kepada:

- 1. Bapak Drs. Budi Kudwadi, S.T M.T. dan Ibu Istiqomah, S.T., M.T. selaku dosen pembimbing I dan dosen pembimbing II yang telah meluangkan waktu, tenaga, dan pikiran dalam memberikan bombingan dalam menyelesaikan tugas akhir ini.
- 2. Bapak Dr. Ir. Juang Akbardin, S.T., M.T., IPM, ASEAN.Eng selaku ketua Program Studi Teknik Sipil Universitas Pendidikan Indonesia
- 3. Dosen Dosen dan Staf Program Studi Teknik Sipil Universitas Pendidikan Indonesia yang telah memberikan ilmu dan membantu dalam banyak hal selama proses perkuliahan dan penyusunan tugas akhir.
- 4. Ayah dan Bunda yang selalu memberikan semangat dan dukungan baik dalam bentuk doa maupun materi.
- 5. Adik tercinta yang selalu memberikan semangat dan selalu menghibur saat ada kesulitan.
- 6. Teh Yoshita Tri Bintang, S.T., yang telah bersedia meluangkan waktu untuk berdiskusi mengenai topik yang dibahas oleh penulis.
- 7. Pak Isal yang sudah membantu penulis dalam mendapatkan data dan berdiskusi mengenai Tugas Akhir yang diambil penulis.
- 8. Teman-Teman Teknik Sipil 2021, Terutama anak kost 5C Al-barkah, dan Teman Teman Tahura yang selalu mendukung, memberi semangat, membantu, dan menjadi teman diskusi selama proses penyusunan tugas akhir.

Analisis Efisiensi Struktur Baja Dengan Sistem Eccentrically Braced Frame Link Horizontal Dan Vertikal (Studi Kasus : Rumah Sakit Sumber Kasih)

Chandra Adi Putra Isnianto¹, Drs. Budi Kudwadi, S.T., M.T² and Istiqomah, S.T., M.T.³

¹Program Studi Teknik Sipil

²Fakultas Pendidikan Teknologi dan Industri

³ Universitas Pendidikan Indonesia

*Corresponding Author: Chandra Adi Putra Isnianto. Email:

Chandraadi.crb123@upi.edu

ABSTRAK

Penelitian ini membahas analisis efisiensi struktur baja menggunakan sistem Eccentrically Braced Frame (EBF) dengan link vertikal dan horizontal pada bangunan Rumah Sakit Sumber Kasih di Kota Cirebon. Tujuan utama penelitian adalah membandingkan kinerja dan efisiensi penggunaan material baja antara kedua tipe EBF sebagai upaya menghasilkan struktur yang lebih ekonomis dan tahan gempa. Tiga model struktur dianalisis: model eksisting tanpa bracing, model dengan EBF link horizontal, dan model dengan EBF link vertikal. Seluruh pemodelan dan analisis menggunakan perangkat lunak ETABS dan mengacu pada standar SNI terkait ketahanan gempa serta perencanaan struktur baja. Metode yang digunakan adalah metode respon spektrum untuk pembebanan gempa, dengan evaluasi meliputi kontrol gaya geser dasar, simpangan antar lantai, pengaruh P-Delta, serta level kinerja struktur. Hasil penelitian menunjukkan bahwa penggunaan sistem EBF Link Horizontal menghasilkan efisiensi massa baja sekitar 2.79% atau pengurangan sekitar 19.69 ton dari struktur existing, sedangkan penggunaan EBF Link Vertikal menghemat sekitar 2.48% atau 17.58 ton. Perbedaan massa antara sistem EBF link horizontal dan vertikal dengan profil baja yang identik sangat kecil. hanya sekitar ±0.3%. Dari sisi kinerja, baik EBF link horizontal maupun vertikal sama-sama mencapai level Immediate Occupancy. EBF Link Horizontal memberikan peningkatan kinerja struktur sebesar 24.27% pada arah X dan 43.55% pada arah Y, dibanding EBF Link Vertikal yang memberikan peningkatan 15.44% pada arah X dan 15.51% pada arah Y.

Keywords: Eccentrically Braced Frame, Efisiensi, Bangunan Baja

Analysis of Steel Structure Efficiency with Eccentrically Braced Frame Horizontal and Vertical Link Systems (Case Study: Sumber Kasih Hospital)

Chandra Adi Putra Isnianto¹, Drs. Budi Kudwadi, S.T., M.T² and Istiqomah, S.T., M.T.³

¹ Civil Engineering Study Program
²Faculty of Technology and Industrial Education
³ Indonesia University of Education
*Corresponding Author: Chandra Adi Putra Isnianto. Email:
Chandraadi.crb123@upi.edu

ABSTRACT

This study discusses the analysis of steel structure efficiency using an Eccentrically Braced Frame (EBF) system with vertical and horizontal links in the Sumber Kasih Hospital building in Cirebon City. The main objective of this study is to compare the performance and efficiency of steel material usage between the two types of EBF as an effort to produce a more economical and earthquake-resistant structure. Three structural models were analyzed: the existing model without bracing, the model with horizontal EBF links, and the model with vertical EBF links. All modeling and analysis were conducted using ETABS software and adhered to SNI standards related to earthquake resistance and steel structure design. The method employed was the response spectrum method for earthquake loading, with evaluations including base shear control, inter-story drift, P-Delta effects, and structural performance levels. The research results show that the use of the horizontal EBF link system achieves steel mass efficiency of approximately 2.79% or a reduction of approximately 19.69 tons from the existing structure, while the use of the vertical EBF link saves approximately 2.48% or 17.58 tons. The mass difference between the horizontal and vertical EBF link systems with identical steel profiles is very small, only approximately $\pm 0.11\%$. In terms of performance, both the horizontal and vertical EBF links achieve the Immediate Occupancy level. The Horizontal EBF Link provides a structural performance improvement of 24.27% in the X direction and 43.55% in the Y direction, compared to the Vertical EBF Link, which provides an improvement of 15.44% in the X direction and 15.51% in the Y direction

Keywords: Eccentrically Braced Frame, Efficiency, Steel Building

DAFTAR ISI

LEMBAR PENGESAHAN	iii
LEMBAR PERNYATAAN	iv
KATA PENGANTAR	v
UCAPAN TERIMA KASIH	vi
ABSTRAK	vii
ABSTRACT	viii
DAFTAR GAMBAR	xiii
DAFTAR TABEL	XV
BAB I LATAR BELAKANG	16
1.1 Latar Belakang	1
1.2 Rumusan Masalah	2
1.3 Tujuan Penelitian	2
1.4 Manfaat Penelitian	3
1.5 Ruang Lingkup Penelitian	3
1.6 Sistematika Penulisan	5
BAB II KAJIAN PUSTAKA	6
2.1 Struktur Baja	6
2.2 Efisiensi Struktur	7
2.3 Eccentrically Braced Frames	8
2.4 Komponen Penyusun EBF	9
2.4.1 Link	9
2.4.2 Pengaku Diagonal dan Balok Diluar Link	12
2.4.3 Kolom	13
2.4.4 Pengaku Link	14
2.5 Karakteristik EBF Link Vertikal (Inverted Y)	15
2.5.1 Panjang Link Vertikal	16
2.5.2 Sudut Rotasi Link Vertikal	16
2.6 Karakteristik EBF Link Horizontal (Inverted V)	17
2.6.1 Panjang Link Horizontal	18
2.6.2 Sudut Rotasi Link Horizontal	19
2.7 Ketidakberaturan Bangunan	20

2.7.1 Ketidakberaturan Horizontal	21
2.7.2 Ketidakberaturan Vertikal	24
2.8 Konsep Pembebanan	28
2.8.1 Beban Mati	28
2.8.2 Beban Hidup	28
2.8.3 Beban Gempa	29
2.8.4 Kombinasi Pembebanan	29
2.9 Metode Analisis Dinamik Respon Spektrum	30
2.10 Kontrol Elemen Struktur	38
2.10.1 Momen Lentur	38
2.10.2 Kuat Geser Nominal	39
2.10.3 Kelangsingan Penampang	39
2.10.4 Tekuk Lateral	40
2.11 Analisis Kinerja Bangunan	41
2.12 ETABS	42
2.13 Penelitian Terdahulu	43
BAB III METODOLOGI	49
3.1 Lokasi Objek penelitian	49
3.2 Waktu penelitian	49
3.3 Jenis dan Metode penelitian	49
3.4 Teknik Analisis Data	50
3.5 Data Penelitian	50
3.6 Prosedur Analisis	51
3.6.1 Studi Literatur	52
3.6.2 Pemodelan Struktur ETABS	52
3.6.3 Pembebanan Struktur	53
3.6.4 Perencanaan EBF	62
3.6.5 Running Model Struktur	63
3.6.6 Kontrol Kapasitas Struktur	63
3.6.7 Perbandingan Efisiensi	65
3.7 Diagram alir	66

BAB IV HASIL DAN PEMBAHASAN	67
4.1 Pengecekan Ketidakberaturan	
4.1.1 Pengecekan Ketidakberaturan Horizontal	
4.1.2 Pengecekan Ketidakberaturan Vertikal	
4.1.3 Konsekuensi	
4.2 Analisis Model I Existing	73
4.2.1 Perhitungan Respond Spektrum	
4.2.2 Periode Fundamental	75
4.2.3 Kontrol Gaya Geser Dasar	77
4.2.4 Kontrol Simpangan (Displacement)	79
4.2.5 Pengaruh P-Delta	82
4.2.6 Level Kinerja Struktur Model I	85
4.3 Perencanaan Eccentrically Braced Frame (EBF) Link Horizontal 86
4.3.1 Perencanaan Link Horizontal	87
4.3.2 Perencanaan Balok diluar Link	92
4.3.3 Perencanaan Bracing	96
4.3.4 Perencanaan Kolom	101
4.4 Perencanaan Eccentrically Braced Frame (EBF) Link Vertikal 109
4.4.1 Perencanaan Link Horizontal	110
4.4.2 Perencanaan Balok diluar Link	114
4.4.3 Perencanaan Bracing	119
4.4.4 Perencanaan Kolom	
4.5 Analisis Pemodelan EBF Link Horizontal	
4.5.1 Kontrol Desain EBF Link Horizontal	
4.5.2 Perhitungan Respond Spektrum	
4.5.1 Bentuk dan Jumlah Ragam	
4.5.2 Periode Fundamental	
4.5.3 Kontrol Gaya Geser Dasar	141
4.5.4 Kontrol Simpangan (Displacement)	
4.5.5 Pengecekan Sudut Rotasi Link	
4.5.6 Pengaruh P-Delta	147
4.6 Analisis Pemodelan EBF Link Vertikal	150

4.6.1 Kontrol Desain EBF Link Vertikal	51
4.6.2 Perhitungan Respond Spektrum	54
4.6.3 Bentuk dan Jumlah Ragam	56
4.6.4 Periode Fundamental	57
4.6.5 Kontrol Gaya Geser Dasar	59
4.6.6 Kontrol Simpangan (Displacement)	61
4.6.7 Pengecekan Sudut Rotasi Link	64
4.6.8 Pengaruh P-Delta	65
4.7 Level Kinerja Struktur	68
4.7.1 Level Kinerja Struktur Model II	68
4.7.2 Level Kinerja Struktur Model III	68
4.8 Perbandingan 10	69
4.8.1 Perbandingan Penggunaan Baja	69
4.8.2 Perbandingan Kinerja EBF Link Vertikal dan Horizontal 1	73
BAB V KESIMPULAN DAN REKOMENDASI1	76
5.1 Kesimpulan	76
5.2 Implikasi 1	77
5.3 Rekomendasi	77
DAFTAR PUSTAKA	79
LAMPIRAN1	82

DAFTAR GAMBAR

Gambar 2. 1 Konstruksi Baja	7
Gambar 2. 3 Posisi Link Pada EBF Link Horizontal (a), dan EBF Link Vertikal (b)	
(Samuel Dalton Hague, 2012)	10
Gambar 2. 4 Gaya yang bekerja pada balok link (Kesetimbangan Statis) (Popov dan	
Engelhardt, 1988)	10
Gambar 2. 5 Distribusi gaya lateral dan internal pada rangka (Pirmoz dan Marefat, 201	
Gambar 2. 6 Balok Link dengan Pengaku Badan	14
Gambar 2. 7 Mekanisme Sendi Plastis EBF Link Vertikal	15
Gambar 2. 8 Sudut Rotasi Sistem EBF Link Vertikal	16
Gambar 2. 9 Mekanisme Sendi Plastis EBF Link Horizontal	18
Gambar 2. 10 Klasifikasi Link	19
Gambar 2. 11 Sudut Rotasi Sistem EBF Link Horizontal	20
Gambar 2. 12 Ketidakberaturan Torsi (1a dan 1b)	21
Gambar 2. 13 Ketidakberaturan Sudut Dalam (2)	
Gambar 2. 14 Ketidakberaturan Diskontinuitas Diafragma (3)	22
Gambar 2. 15 Ketidakberaturan akibat pergeseran tegak turus terhadap bidang (4)	23
Gambar 2. 16 Ketidakberaturan Sistem Non Paralel (5)	
Gambar 2. 17 Ketidakberaturan Kekakuan Tingkat Lunak dan Tingkat Lunak Berlebil	
(1a dan 1b)	
Gambar 2. 18 Ketidakberaturan berat (massa) (2)	
Gambar 2. 19 Ketidakberaturan Geometri Vertikal (3)	
Gambar 2. 20 Ketidakberaturan Akibat Diskontinuitas Bidang Pada Elemen Vertikal	
Pemikul Gaya Lateral (4)	27
Gambar 2. 21 Ketidakberaturan Tingkat Lemah dan Ketidakberaturan Tingkat Lemah	
Berlebihan Akibat Diskontinuitas Pada Kekuatan Lateral Tingkat	
Gambar 2. 22 Peta Parameter Gerakan Tanah (S1) (SNI 1726-2019)	34
Gambar 3. 1 Pemodelan 3D Bangunan (Tanpa EBF)	
Gambar 3. 2 Hasil Website Respon Spektra di Kota Cirebon	
Gambar 4. 1 Gambar Denah Bangunan	
Gambar 4. 2 Displacement tiap Lantai Model I	
Gambar 4. 3 Inelastik Drift antar Lantai Model I	
Gambar 4. 4 Pengecekan Koefisien Stabilitas Tiap Lantai Model I	85
Gambar 4. 5 Perencanaan EBF Horizontal	
Gambar 4. 6 Lokasi Pemasangan Bracing Link Horizontal	
Gambar 4. 7 Gaya Dalam Pada Link	
Gambar 4. 8 Gaya Dalam Pada Balok Luar Link Contoh	93
Gambar 4. 9 Gaya Dalam Aksial Kombinasi Gravitasi	
Gambar 4. 10 Gaya Dalam Geser dan Momen Kombinasi Gravitasi	
Gambar 4. 11 Gaya Dalam Aksial Kombinasi Gempa	
Gambar 4. 12 Gaya Dalam Geser dan Momen Kombinasi Gempa	
Gambar 4. 13 Perencanaan EBF Vertikal	
Gambar 4. 14 Lokasi Pemasangan Bracing Link Vertikal	
Gambar 4. 15 Gaya Dalam Pada Link	
Gambar 4, 16 Gaya Dalam Pada Balok Luar Link Contoh	

Gambar 4. 17 Gaya Dalam Aksial Kombinasi Gravitasi	124
Gambar 4. 18 Gaya Dalam Geser dan Momen Kombinasi Gravitasi	124
Gambar 4. 19 Gaya Dalam Aksial Kombinasi Gempa	125
Gambar 4. 20 Gaya Dalam Geser dan Momen Kombinasi Gempa	125
Gambar 4. 21 Rasio Hasil Steel Check Design Portal Memanjang EBF-H	132
Gambar 4. 22 Rasio Hasil Steel Check Design Portal Melintang EBF-H	132
Gambar 4. 23 Lokasi Kontrol Link, Balok dan Bracing	
Gambar 4. 24 Gaya Dalam Maksimum Link pada lokasi control	133
Gambar 4. 25 Gaya Dalam Maksimum Balok luar link pada lokasi control	134
Gambar 4. 26 Gaya Dalam Maksimum Bracing pada lokasi control	134
Gambar 4. 27 Lokasi Kontrol Kolom EBF Link Horizontal	135
Gambar 4. 28 Grafik Displacement tiap Lantai hasil ETABS Model II	144
Gambar 4. 29 Inelastic drift Model II	146
Gambar 4. 30 Pengecekan Koefisien Stabilitas tiap Lantai Model II	149
Gambar 4. 31 Rasio Hasil Steel Check Design Portal Memanjang EBF-V	150
Gambar 4. 32 Rasio Hasil Steel Check Design Portal Melintang EBF-V	150
Gambar 4. 33 Lokasi Kontrol Link, Balok dan Bracing	151
Gambar 4. 34 Gaya Dalam Maksimum Link pada lokasi control	151
Gambar 4. 35 Gaya Dalam Maksimum Balok luar link pada lokasi control	152
Gambar 4. 36 Gaya Dalam Maksimum Bracing pada lokasi control	152
Gambar 4. 37 Lokasi Kontrol Kolom EBF Link Horizontal	153
Gambar 4. 38 Grafik Displacement tiap Lantai Model 3	162
Gambar 4. 39 Inelastic drift Model III	164
Gambar 4. 40 Pengecekan Koefisien Stabilitas Tiap Lantai Model III	167

DAFTAR TABEL

Tabel 2. 1 Klasifikasi Jarak Pengaku dan Kapasitas Rotasi Link	15
Tabel 2. 2 Ketidakberaturan horizontal pada struktur	24
Tabel 2. 3 Kategori Resiko Bangunan	31
Tabel 2. 4 Faktor keutamaan gempa	32
Tabel 2. 5 Kelas Situs Menurut SNI 1726 2019	33
Tabel 2. 6 Parameter Nilai Fa	35
Tabel 2. 7 Parameter Nilai Fv	35
Tabel 2. 8 Penentuan Kategori Seismik (SDS)	36
Tabel 2. 9 Penentuan Kategori Seismik (SD1)	36
Tabel 2. 10 Faktor R, Cd dan Omega	37
Tabel 2. 11Nilai Ct dan X	38
Tabel 3. 1 Waktu Pengerjaan Tugas Akhir	
Tabel 3. 2 Tinggi Portal	
Tabel 3. 3 Tabel Kategori Resiko Bangunan	55
Tabel 3. 4 Nilai Ie berdasarkan kategori resiko	55
Tabel 3. 5 Tabel Korelasi Ss dan S1 terhadap Koefisien Situs	
Tabel 3. 6 Tabel Kategori Desain Seismik untuk Nilai SDS dan SD1	. 58
Tabel 3. 7 Faktor Nilai R, Cd, dan Omega	. 60
Tabel 3. 8 Nilai Parameter Ct dan X	. 61
Tabel 3. 9 Batasan Rasio Lebar terhadap Tebal untuk Elemen Tekan Untuk Komponer	
Struktur Daktail Sedang dan Daktail Tinggi (SNI 7860-2020 dan AISC 341-16)	
Tabel 4. 1 Pengecekan Ketidakberaturan Torsi	
Tabel 4. 2 Ketidakberaturan Sudut Dalam	
Tabel 4. 3 Ketidakberaturan Diskontinuitas Diafragma	
Tabel 4. 4 Ketidakberaturan Kekakuan Tingkat Lunak dan Tingkat Lunak Berlebihan.	
Tabel 4. 5 Ketidakberaturan berat (massa)	
Tabel 4. 6 Ketidakberaturan Geometri Vertikal	
Tabel 4. 7 Pengecekan Ketidakberaturan Tingkat Lemah	
Tabel 4. 8 Pasal Yang Perlu Diperhatikan akibat ketidakberaturan horizontal 1 dan 2	
Tabel 4. 9 Tabel Nilai Cu	
Tabel 4. 10 Tabel Periode Bangunan Existing	
Tabel 4. 11 Nilai Base Shear Dinamik ETABS	
Tabel 4. 12 Displacement tiap Lantai Model I	
Tabel 4. 13 Displacement, Elastic dan Inelastic Drift Model I	
Tabel 4. 14 Tabel Pengecekan Koefisien Stabilitas Tiap Lantai Model I	
Tabel 4. 15 Profil Link EBF Link Horizontal	
Tabel 4. 16 Profil Balok Luar Link EBF Link Vertikal	
Tabel 4. 17 Resume Kontrol Kapasitas Balok	
Tabel 4. 18 Profil Baja Bracing EBF Link Vertikal	
Tabel 4. 19 Profil Baja Kolom EBF Link Horizontal	
Tabel 4. 20 Profil Link EBF Link Vertikal	
Tabel 4. 21 Profil Balok Luar Link EBF Link Horizontal	
Tabel 4. 22 Resume Kontrol Kapasitas Balok	
Tabel 4. 23 Profil Baja Bracing EBF Link Horizontal	
Tabel 4. 24 Profil Baja Kolom EBF Link Horizontal	127

Tabel 4. 25 Kontrol Kapasitas Link, Balok di luar link, dan Bracing EBF Link H	Iorizontal
Tabel 4. 26 Modal Parcipating Mass Ratio	138
Tabel 4. 27 Tabel Nilai Cu	139
Tabel 4. 28 Tabel Periode Bangunan Model 2	140
Tabel 4. 29 Nilai Base Shear Dinamik ETABS	142
Tabel 4. 30 Displacement tiap Lantai Model II	144
Tabel 4. 31 Tabel Displacement, Elastic dan Inelastic drift Model II	145
Tabel 4. 32 Pengecekan Rotasi Link Arah X dan Y Model II	147
Tabel 4. 33 Pengecekan Koefisien Stabilitas tiap Lantai Model II	
Tabel 4. 34 Kontrol Kapasitas Link, Balok di luar link, dan Bracing EBF Link V	/ertikal
	153
Tabel 4. 34 Modal Parcipating Mass Ratio Model III	156
Tabel 4. 35 Tabel Nilai Cu	
Tabel 4. 36 Tabel Periode Bangunan Model III	158
Tabel 4. 37 Nilai Base Shear Dinamik ETABS Model III	160
Tabel 4. 38 Displacement tiap Lantai Model III	162
Tabel 4. 40 Tabel Displacement, Elastic dan Inelastic drift Model III	163
Tabel 4. 40 Pengecekan Rotasi Link Arah X dan Y Model III	
Tabel 4. 41 Pengecekan Koefisien Stabilitas Tiap Lantai Model III	167
Tabel 4. 42 Massa per Lantai Model 1	170
Tabel 4. 43 Profil Baja Model II	171
Tabel 4. 44 Massa per Lantai Model II	171
Tabel 4. 45 Profil Baja Model III	172
Tabel 4. 46 Massa per Lantai Model III	172
Tabel 4. 47 Perbandingan Massa Model 1, 2 dan 3 (Tanpa Plat Beton)	173
Tabel 4. 48 Level kinerja berdasarkan ATC-40	174
Tabel 4. 49 Level Kinerja Struktur arah X	174
Tabel 4. 50 Level Kinerja Struktur arah Y	174
Tabel 4. 51 Perbandingan Nilai Displacement Per Lantai Model I, II dan III	175

DAFTAR PUSTAKA

Acosta, J., Bojórquez, E., Bojórquez, J., Reyes-Salazar, A., Ruiz-García, J., Ruiz, S. E., & Iovinella, I. (2024).

Seismic performance of steel buildings with eccentrically braced frame systems with different configurations. Buildings, 14(1), 118. https://doi.org/10.3390/buildings14010118

Zhang, Y., & Wang, Z. (2022).

Seismic performance assessment of eccentrically braced steel frames with horizontal links. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. https://doi.org/10.1177/09544062221088944

Penelov, Chavdar & Rangelov, N & Hadzhiyaneva, Irena & Radoslavov, Georgi. (2019).

Design Example on Dual Eccentrically Braced Frame (D-EBF) with Extended Stiffened End-Plate Joints.. https://www.researchgate.net/publication/334941557_Design_Example_o n_Dual_Eccentrically_Braced_Frame_D-EBF_with_Extended_Stiffened_End-Plate_Joints

Gholami, M., & Ghassemieh, M. (2022).

Lateral reliability assessment of eccentrically braced frames considering link behavior. Engineering, Technology & Applied Science Research, 12(4), 8749–8754. https://doi.org/10.48084/etasr.4749

Zhang, H., & Li, G. (2022).

Seismic performance of eccentrically braced frames with vertical links retrofitted by box-shaped steel plates. Buildings, 12(10), 1506. https://doi.org/10.3390/buildings12101506

Musbar, Jufriadi, Abdul Muhyi, Khairul Miswar, Munardy, Hanif, Aiyub, Zulfikar (2023).

BEHAVIOR OF THE LINK COUPLING BEAM ON THE ECCENTRICALLY BRACED FRAME. Journal of Southwest Jiaotong University, 12(3), 1769–1778. http://jsju.org/index.php/journal/article/view/1769

Sabelli, R., & Mahin, S. A. (2006).

Seismic demands on steel eccentrically braced frames with composite floors. Journal of Structural Engineering, 132(9), 1401-1412. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:9(1401)

A., & Dubina, D. (2004).

Performance of eccentrically braced frames with removable links. Journal of Structural Engineering, 130(6), 899-907. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:6(899)

American Institute of Steel Construction (AISC). (2016).

Seismic design manual (3rd ed.). Chicago, IL: AISC.

American Institute of Steel Construction (AISC). (2016).

Specification for Structural Steel Buildings (3rd ed.). Chicago, IL: AISC.

Bruneau, M., Uang, C.-M., & Sabelli, R. (2015). *Ductile Design of Steel Structure*. 6.

SNI-1726-2019. (2019). SNI-1726-2019-Persyaratan-Beton-Struktural-Untuk-Bangunan-Gedung.

Berman, J. W., & Bruneau, M. (2008).

Plastic analysis and design of steel bridges with eccentrically braced frames. Journal of Structural Engineering, 134(9), 1448-1457. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:9(1448)

Chandra Adi Putra Isnianto, 2025 ANALISIS EFISIENSI STRUKTUR BAJA DENGAN SISTEM ECCENTRICALLY BRACED FRAME LINK HORIZONTAL DAN VERTIKAL (STUDI KASUS: RUMAH SAKIT SUMBER KASIH) Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu Bruneau, M., Uang, C. M., & Sabelli, R. (2011).

Ductile design of steel structures (2nd ed.). New York, NY: McGraw-Hill.

Chen, W. F., & Lui, E. M. (2006).

Structural stability: Theory and implementation. Boca Raton, FL: CRC Press.

Ming, N. W., & Lilya S., & Frisca, P. P. (2025)

Comparison of Strain Histories on Reinforced Concrete Eccentric Braced
Frame (EBF) With Vertical and Horizontal Link
https://doi.org/10.21776/ub.rekayasasipil.2025.019.02.5

Engelhardt, M. D., & Popov, E. P. (1989).

Behavior of long links in eccentrically braced frames. Journal of Structural Engineering, 115(8), 2057-2079. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:8(2057)

Lin, X., & Xu, Y. (2012).

Nonlinear seismic analysis of EBFs with innovative link designs. Advanced Steel Construction, 8(1), 74-85. https://doi.org/10.18057/IJASC.2012.8.1.9