BAB 3

METODE PENELITIAN

3.1 Metode Penelitian

Metode merupakan suatu pendekatan yang sistematis dan terstruktur yang digunakan untuk mencapai tujuan tertentu. Menurut Nazir (2014), metode adalah suatu cara atau teknik yang terencana untuk melakukan suatu kegiatan atau penelitian. Penelitian didefinisikan sebagai suatu proses yang dilakukan untuk mengumpulkan, menganalisis, dan menginterpretasikan data dengan tujuan meningkatkan pemahaman tentang suatu fenomena atau masalah (Creswell, 2018). Sehingga, definisi metode penelitian adalah pendekatan sistematis untuk mengumpulkan, menganalisis, dan menginterpretasi data guna menjawab pertanyaan atau menguji hipotesis yang hasilnya valid.

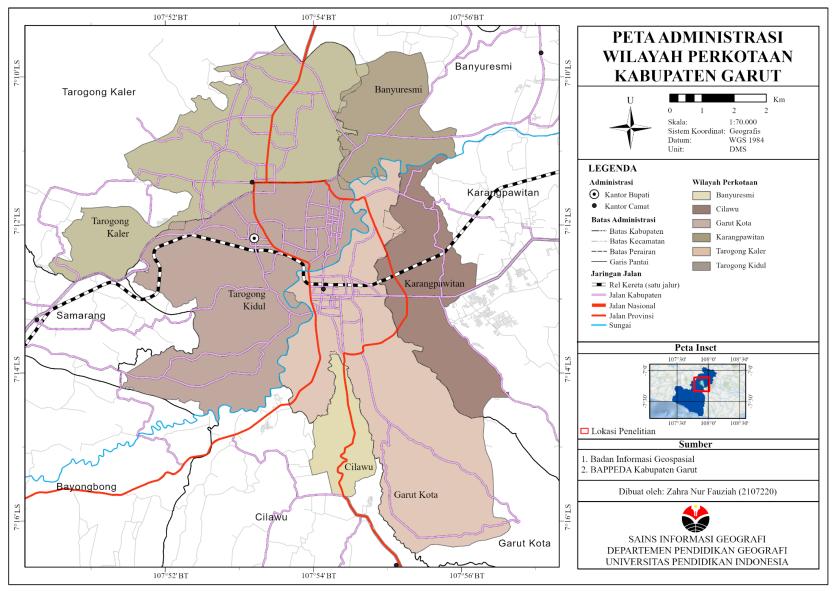
Penelitian ini menggunakan pendekatan kuantitatif dengan menggunakan teknologi Penginderaan Jauh. Penginderaan jauh adalah teknik untuk memperoleh informasi tentang fenomena geosfer melalui interpretasi citra yang terekam (Somantri, 2021). Penginderaan jauh dapat mencakup area yang luas serta kemudahan dalam mengakses datanya. Penginderaan Jauh pada penelitian ini memanfaatkan citra Landsat multitemporal yang digunakan sebagai data pengolahan untuk identifikasi kekritisan lingkungan. Teknologi penginderaan jauh membantu dalam memperoleh parameter *Environmental Critically Index* (ECI) yang meliputi LST, NDBI, NDVI, dan MNDWI.

Pendekatan yang diterapkan pada penelitian ini adalah pendekatan keruangan. Menurut Danoedoro (2012), pendekatan spasial memiliki keterkaitan erat dengan Penginderaan Jauh, Sistem Informasi Geografis, dan Kartografi sebagai tiga disiplin utama dalam Sains Informasi Geografis. Sementara itu, Yunus (2010) menyatakan bahwa pendekatan spasial berfungsi sebagai model yang memungkinkan analisis mendalam suatu fenomena keruangan berdasarkan variabel-variabel tertentu.

Penentuan metode tersebut diharapkan dapat menjawab permasalahan yang telah dirumuskan mengenai tingkat kekritisan lingkungan di Kabupaten Garut, diharapkan dapat memberikan rekomendasi untuk pengelolaan wilayah yang lebih baik.

3.2 Lokasi dan Waktu Penelitian

3.2.1 Lokasi Penelitian


Kabupaten Garut merupakan salah satu kabupaten di Provinsi Jawa Barat yang memiliki letak yang strategis yang berperan sebagai salah satu wilayah penyangga Ibu Kota Provinsi Jawa Barat, dengan jarak sekitar 61,5 km dari Pusat Pemerintahan Provinsi Jawa Barat di Bandung dan sekitar 216 km dari Pusat Pemerintahan Republik Indonesia di Jakarta. Berdasarkan data BPS Kabupaten Garut pada tahun 2023 memiliki 42 kecamatan. Luas wilayah administratif Kabupaten Garut sebesar 306.519 Ha (3.065,19 Km²) yang terletak pada koordinat geografis antara 107°25'8" - 108°7'30" BT dan 6°56'49" - 7°45'00" LS.

Lokasi penelitian dilakukan di wilayah perkotaan Kabupaten Garut yang mencakup 6 kecamatan yang berada di Kabupaten Garut dengan total luas wilayah sebesar 7.740,08 Ha (77,40 Km²) yang terletak pada koordinat geografis antara 107°51'0" - 107°55'40" BT dan 7°9'45" - 7°16'30" LS. Adapun yang termasuk wilayah perkotaan Kabupaten Garut berdasarkan Peraturan Daerah Kabupaten Garut Nomor 29 Tahun 2011 Tentang Rencana Tata Ruang Wilayah Kabupaten Garut Tahun 2011 – 2031 yang meliputi:

- 1. Kecamatan Cilawu
- 4. Kecamatan Garut Kota
- 2. Kecamatan Tarogong Kidul
- 5. Kecamatan Karangpawitan
- 3. KecamatanTarogong Kaler
- 6. Kecamatan Banyuresmi

Berdasarkan letak administratif, wilayah perkotaan Kabupaten Garut berbatasan dengan beberapa Kecamatan lainnya, diantaranya sebagai berikut:

- Utara dengan Kecamatan Leles
- Timur dengan Kecamatan Sucinaraja
- Selatan dengan Kecamatan Banjarwangi
- Barat dengan Kecamatan Bayongbong

Gambar 3. 1 Peta Wilayah Penelitian

Zahra Nur Fauziah, 2025

ANALISIS PERUBAHAN TINGKAT KEKRITISAN LINGKUNGAN MENGGUNAKAN ENVIRONMENTAL CRITICALLY INDEX DI WILAYAH PERKOTAAN KABUPATEN
GARUT

Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

3.2.2 Waktu Penelitian

Penelitian dilaksanakan selama 8 bulan terhitung dimulai pada bulan November 2024 hingga bulan Juni 2025 dengan rincian sebagai berikut:

November Desember Januari Februari Maret April Mei Juni Kegiatan Juli 2 2 3 4 1 2 3 4 3 4 2 3 2 3 4 1 3 2 3 4 4 Tahap Persiapan Mengidentifik asi permasalahan. Menentukan judul penelitian. Mengumpulka n literatur. Membuat instrumen penelitian. Membuat proposal. Tahap Pengolahan dan Analisis Pengumpulan data. Pengolahan data. Validasi lapangan. Pembuatan peta dan analisis. Tahap Pelaporan Penyusunan laporan akhir. Sidang akhir.

Tabel 3. 1 Waktu Penelitian

Sumber: Hasil Analisis, 2025

3.3 Alat dan Bahan

3.3.1 Alat Penelitian

Pada proses berlangsungnya sebuah penelitian diperlukan alat yang digunakan dalam mendukung berjalannya kegiatan penelitian dengan baik. Oleh sebab itu, dibawah ini terdapat beberapa alat penelitian yang digunakan oleh peneliti, adalah sebagai berikut:

Tabel 3. 2 Alat Penelitian

No.	Alat Penelitian	Spesifikasi	Fungsi
1.	Laptop MSI Moderm B5M	Processor AMD Ryzen 5 5000U, 4.3GHz, SSD 512 GB RAM 8GB DDR4, VGA AMD Radeon Graphics	Digunakan dalam menjalani penelitian, seperti mengumpulkan data, mengolah data, menganalisis data, dan membuat laporan penelitian.
2.	ArcGIS Pro	Version 3.0.1	Digunakan dalam pengolahan data, analisis data, dan proses layout peta.
3.	Google Earth Pro	Version 7.3	Digunakan untuk melihat kondisi penggunaan lahan dengan resolusi citra satelit sangat tinggi.
4.	IBM SPSS Statistic	Version 31.0.0	Digunakan untuk memperoleh nilai statistik dan terhadap uji data yang akan dilakukan. Uji data yang dilakukan berupa regresi linier

No.	Alat Penelitian	Spesifikasi	Fungsi
5.	Microsoft Word	Version 2021	Digunakan dalam melakukan proses penyusunan laporan.
6.	Canopy Cover	Version 2.0	Digunakan untuk mengidentifikasi tingkat kerapatan vegetasi untuk uji validitas nilai NDVI.
7.	Avenza Map	Version 5.4.3	Digunakan untuk membaca peta dengan format .geopdf.
8.	Survey Cam	Version 1.6.14	Digunakan untuk mendokumentasikan kondisi di lapangan disertai dengan titik koordinat lokasi pengecekan lapangan.
9.	Handphone Hasil Analisis 2025	Iphone 12 pro	Digunakan untuk proses dokumentasi uji validitas lapangan.

Sumber: Hasil Analisis, 2025

3.3.2 Bahan Penelitian

Selain itu, bahan juga diperlukan dalam mendukung berjalannya kegiatan penelitian agar terlaksana dengan baik. Maka dari itu, dibawah ini terdapat beberapa bahan penelitian yang digunakan oleh peneliti, adalah sebagai berikut :

Tabel 3. 3 Bahan Penelitian

No.	Bahan	Spesifikasi	Sumber
1.	Citra Landsat 8 OLI/TIRS	Wilayah Kabupaten Garut Tahun 2014 Tanggal Akuisisi: 5 Agustus 2014	States Geological
2.	Citra Landsat 9 OLI/TIRS	Wilayah Kabupaten Garut Tahun 2024 Tanggal Akuisisi: 23 Juli 2024	Website United States Geological Survey (USGS)
3.	Data Penduduk Kabupaten Garut	Tahun 2014 dan 2024	Badan Pusat Statistik
4.	Batas Administrasi	Wilayah Administrasi Kabupaten Garut	Inageoportal
5.	Data Sampel Environmentar Critically Index	Kabupaten Garut	Hasil Pengolahan Citra Satelit

Sumber: Hasil Analisis, 2025

3.4 Populasi dan Sampel

3.4.1 Populasi

Populasi dalam penelitian merujuk pada keseluruhan objek atau individu yang menjadi fokus dari suatu penelitian. Sementara itu, sampel merupakan sebagian kecil dari populasi yang dipilih untuk dianalisis guna mendapatkan informasi yang mewakili populasi asalnya. Dapat disimpulkan bahwa populasi mencakup seluruh objek yang diteliti, sedangkan sampel merupakan subset dari populasi yang digunakan untuk mengambil kesimpulan tentang populasi secara keseluruhan. Pengambilan sampel dilakukan karena keterbatasan waktu, tenaga, biaya, dan sumber daya lainnya. Oleh karena itu, penting untuk memastikan bahwa sampel yang diambil adalah representatif dari populasi agar hasil penelitian dapat diandalkan. Berdasarkan pengertian diatas, maka dalam penelitian ini populasi mencakup hasil pengolahan *Environmental Critically Index* (ECI) di wilayah perkotaan Kabupaten Garut, yang mencakup 6 kecamatan 42 desa dengan total luas 7.740,08 Ha (77,40 Km²).

3.4.2 Sampel

Sampel dalam penelitian merujuk pada sebagian kecil dari populasi yang diteliti untuk mewakili keseluruhan populasi. Sampel digunakan untuk memperoleh informasi yang dapat digunakan untuk membuat kesimpulan tentang populasi secara umum. Sampel merupakan sebagian dari objek penelitian yang telah dipilih untuk dianalisis guna mendapatkan informasi yang mewakili populasi asalnya. Proses penentuan sampel harus memperhatikan ukuran dan keragaman sampel agar hasil penelitian dapat diandalkan.

Penelitian ini menggunakan teknik pengambilan sampel secara purposive sampling, yaitu teknik penentuan sampel berdasarkan pertimbangan tertentu yang sesuai dengan tujuan dan kebutuhan penelitian (Sugiyono, 2017). Teknik ini dipilih karena lokasi sampel ditentukan secara sengaja pada wilayah-wilayah yang merepresentasikan masing-masing kelas tingkat kekritisan lingkungan berdasarkan hasil analisis *Environmental Critically Index* (ECI).

Total titik sampel yang digunakan dalam penelitian ini berjumlah 53 titik, yang tersebar pada wilayah perkotaan Kabupaten Garut. Titik-titik tersebut dipilih

secara representatif untuk mewakili seluruh empat kelas klasifikasi ECI, yaitu tidak kritis, kritis tingkat rendah, kritis tingkat sedang, kritis tingkat tinggi. Selain itu, sebaran titik sampel juga mencakup 6 kecamatan di wilayah penelitian, dengan mempertimbangkan distribusi spasial dari masing-masing kelas kekritisan lingkungan. Pengambilan titik dilakukan dengan memperhatikan kemudahan akses lapangan dan kejelasan objek pada citra satelit.

3.5 Variabel Penelitian

Variabel penelitian merupakan suatu nilai/sifat dari objek, atribut, individu yang memiliki banyak variasi tertentu antara satu dengan lainnya dan telah ditentukan oleh peneliti untuk dicari informasinya, dipelajari, serta ditarik kesimpulannya. Sehingga dengan adanya variabel dapat menjawab rumusan masalah penelitian yang akan dilakukan.

1. Variabel Penelitian

Variabel pada penelitian ini adalah hasil pengolahan Environmental Critically Index (ECI) melalui pengolahan parameter Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), dan Modified Normalized Difference Water Index (MNDWI) wilayah perkotaan Kabupaten Garut pada tahun 2014 dan 2024.

Variabel **Parameter** Environmental Critically Land Surface Temperature (LST) *Index* (ECI) Normalized Difference *Vegetation Index* (NDVI) Normalized Difference Builtup Index (NDBI) Modified Normalized Difference Water Index (MNDWI)

Tabel 3. 4 Variabel Penelitian

Sumber: Hasil Analisis, 2025

2. Indikator Variabel

Berikut merupakan indikator penilaian variabel pada penelitian ini:

- a. Tingkat Kekritisan Lingkungan meliputi:
 - Tinggi: Kerapatan vegetasi rendah/tidak ada vegetasi, tingkat kerapatan bangunan tinggi, tidak adanya badan air, suhu LST antara objek dan lingkungan relatif tinggi.
 - Sedang: Masih adanya vegetasi, tingkat kerapatan bangunan sedang, tingkat kebasahan sedang, suhu LST antara objek dan lingkungan relatif sama.
 - Rendah: Kondisi kerapatan vegetasi tinggi, tingkat kerapatan bangunan rendah, tingkat kebasahan tinggi, suhu LST antara objek dan lingkungan relatif rendah.
- b. Land Surface Temperature mengenai suhu permukaan tanah.
- c. Normalized Difference Vegetation Index mengenai kondisi keberadaan dan kerapatan vegetasi.
- d. *Normalized Difference Built-up Index* mengenai kondisi keberadaan dan kerapatan bangunan.
- e. *Modified Normalized Difference Water Index* mengenai kondisi keberadaan badan air.

3.6 Tahapan Penelitian

Tahapan penelitian merupakan acuan kerangka kerja dalam pelaksanaan penelitian. Tahapan penelitian memiliki tujuan untuk memberikan panduan yang jelas dan terstruktur bagi peneliti ketika menjalankan penelitian. Penelitian ini terdiri dari tiga bagian utama, yaitu tahap persiapan, tahap pengolahan data, dan tahap analisis data. Tahap persiapan adalah langkah awal dalam penelitian. Pada penelitian ini, tahapan tersebut mencakup identifikasi permasalahan, studi literatur, penyusunan proposal penelitian, pembuatan instrumen penelitian, dan pengumpulan data. Selanjutnya, tahapan pengolahan data melibatkan proses pemrosesan, pengelompokan, dan interpretasi data untuk memperoleh hasil yang

sesuai dengan tujuan penelitian. Sementara itu, tahapan analisis data berfokus pada proses menjawab rumusan masalah berdasarkan data yang telah dikumpulkan.

3.6.1 Tahap Persiapan

Tahap persiapan mencakup perancangan dan pengumpulan data untuk penelitian. Pada tahapan ini, peneliti melakukan berbagai tahapan persiapan, berikut tahap-tahap yang dilakukan:

1. Menentukan Permasalahan dan Judul Penelitian

Pada tahap ini, peneliti mengidentifikasi permasalahan yang ada serta mencari gap penelitian terdahulu yang dapat dijadikan sebagai dasar penelitian. Hal ini bertujuan agar topik yang diteliti memiliki perbedaan dan kontribusi baru dibandingkan dengan penelitian sebelumnya. Proses yang dilakukan untuk menemukan isu permasalahan meliputi:

- a. Menganalisis isu-isu terkini yang sedang terjadi.
- b. Menentukan tema utama dari permasalahan yang akan diteliti.
- c. Membandingkan dan menganalisis penelitian terdahulu untuk dijadikan dasar dalam menentukan judul penelitian.

2. Pengumpulan Literatur

Tahapan ini bertujuan untuk mencari dan mengumpulkan referensi dari jurnal ilmiah, artikel, skripsi, prosiding seminar yang akan dijadikan sumber acuan dalam penelitian ini. Studi literatur dilakukan dengan mencari sumber data, teori, serta penelitian terdahulu yang dapat mendukung penelitian yang sedang dilakukan. Pada penelitian ini, dasar teori, peraturan, serta metode yang telah digunakan dalam penelitian sebelumnya menjadi acuan utama. Berikut adalah langkah-langkah dalam studi literatur yang dilakukan oleh peneliti:

- a. Mencari referensi dari jurnal yang bersumber dari platform terpercaya.
- b. Mengumpulkan referensi dari jurnal yang diterbitkan dalam kurun waktu 10 tahun terakhir, dengan minimal 20 jurnal dari dalam negeri dan 20 jurnal dari luar negeri yang relevan dengan penelitian.

c. Mensitasi referensi yang telah dikumpulkan, baik dalam bentuk jurnal, artikel, buku, maupun sumber lainnya, ke dalam penulisan penelitian.

3. Pembuatan Proposal Penelitian

Tahapan ini merupakan proses menuangkan gagasan dan konsep penelitian yang akan dilakukan oleh peneliti. Penyusunan proposal penelitian dalam tahap ini mengacu pada peraturan yang berlaku di Universitas Pendidikan Indonesia. Pedoman yang digunakan didasarkan pada Peraturan Rektor Universitas Pendidikan Indonesia Nomor 68 Tahun 2024 mengenai Pedoman Penulisan Karya Ilmiah, yang bertujuan mendukung visi UPI sebagai *World Class University*.

4. Pembuatan Instrumen Penelitian

Tahapan ini mencakup penyusunan langkah-langkah teknis yang akan diterapkan selama kegiatan observasi lapangan. Tujuan utamanya adalah untuk mempermudah proses pengumpulan data agar terstruktur dan sesuai dengan kebutuhan analisis. Instrumen penelitian yang digunakan dalam penelitian ini berupa tabel pencatatan data lapangan yang meliputi: waktu pencatatan, koordinat titik pengamatan, identitas sampel, nilai *Land Surface Temperature* (LST), indeks vegetasi (NDVI), indeks bangunan (NDBI), indeks kelembapan air permukaan (MNDWI), serta klasifikasi tingkat kekritisan berdasarkan *Environmental Criticality Index* (ECI). Adanya instrumen ini membantu peneliti dalam mengintegrasikan hasil observasi lapangan dengan data spasial untuk analisis lebih lanjut.

5. Pengumpulan Data

Tahap ini berfokus pada pengumpulan data yang diperlukan dalam penelitian, termasuk data primer dan sekunder. Setelah data terkumpul, tahap selanjutnya adalah pengolahan data serta penarikan hipotesis sementara berdasarkan hasil pengolahan, baik dari sumber primer maupun sekunder. Setelah dilakukan validasi di lapangan, reinterpretasi dilakukan terhadap peta yang mengandung informasi yang kurang akurat. Tahapan ini juga mencakup analisis lebih lanjut terhadap peta yang telah dikoreksi.

Berikut adalah langkah-langkah persiapan yang dilakukan dalam penelitian ini:

a. Mengunduh Citra Landsat 8

Terdapat beberapa metode untuk mengunduh data citra Landsat, salah satunya adalah melalui situs resmi penyedia, yaitu USGS. Pengunduhan dilakukan dengan membuat akun terlebih dahulu sebelum dapat mengunduh citra sesuai kebutuhan. Selain itu, data juga dapat diperoleh melalui pihak ketiga atau platform lain seperti *Google Earth Engine* (GEE), LAPAN, serta situs web yang bekerja sama dengan USGS. Dalam penelitian ini, pengunduhan data citra dilakukan langsung melalui situs resmi USGS di https://earthexplorer.usgs.gov/ untuk memperoleh citra Landsat 8.

b. Mengunduh Data Penduduk Kabupaten Garut

Lembaga yang menyediakan data kependudukan di Indonesia salah satunya adalah Badan Pusat Statistik (BPS). Setiap daerah memiliki kantor BPS sendiri yang bertugas mengumpulkan data kependudukan untuk keperluan analisis dalam kajian demografi. Dalam penelitian ini, digunakan data jumlah penduduk Kabupaten Garut untuk tahun 2014 dan 2024, yang diperoleh dari BPS Kabupaten Garut. Data untuk tahun 2014 dapat diakses melalui situs resmi https://garutkab.bps.go.id/id yang dikelola oleh BPS Kabupaten Garut. Namun, untuk data tahun 2024 mengajukan permintaan data ke Kantor BPS Kabupaten Garut dikarenakan data di situs resmi BPS belum terupdate.

c. Koreksi Radiometrik

Koreksi citra dilakukan dengan menerapkan koreksi radiometrik. Koreksi radiometrik berfungsi untuk mengatasi kesalahan yang terdapat pada citra satelit. Berikut adalah persamaan yang dapat digunakan untuk melakukan koreksi radiometrik (USGS, 2015):

$$L\lambda = ML*Qcal + AL \dots (7)$$

Keterangan:

 $L\lambda = Spectral\ radiance\ (W/m2*sr*\mu m)$

ML = Radiance multiplicative scaling factor

Qcal = Corresponds to band 10

3.6.2 Tahap Pengolahan Data

Tahapan ini bertujuan untuk mengolah, menjelaskan, dan mendeskripsikan data agar menghasilkan informasi baru. Salah satu proses dalam pengolahan data adalah melalui studio lab yang memiliki fungsi sebagai tahap pemrosesan data yang telah dikumpulkan. Berikut merupakan langkah-langkah dalam mengolah data untuk menghasilkan informasi:

- 1. Pengolahan Indeks Kekritisan Lingkungan menggunakan *Environmental*Critically Index (ECI)
 - a. Pengolahan Normalized Difference Vegetation Index (NDVI)

Normalized Difference Vegetation Index (NDVI) merupakan salah satu parameter untuk melakukan perhitungan ECI. NDVI adalah metode yang digunakan untuk mendeteksi tingkat kehijauan vegetasi dengan memanfaatkan teknik penginderaan jauh. Teknik ini dilakukan melalui analisis gelombang elektromagnetik inframerah dan inframerah dekat. NDVI diterapkan untuk mengidentifikasi distribusi vegetasi di Kabupaten Garut dengan algoritma berikut (Budiputra, 2021).

$$NDVI = \frac{(NIR-R)}{(NIR+R)}....(8)$$

Keterangan:

NDVI = Normalized Difference Vegetation Index

NIR = Nilai reflektansi inframerah dekat

R = Nilai reflektansi merah

Data yang sudah dilakukan pengolahan menggunakan algoritma NDVI, akan menghasilkan klasifikasi sebagai berikut (Peraturan Menteri Kehutanan Republik Indonesia, 2003):

Tabel 3. 5 Klasifikasi Normalized Difference Vegetation Index (NDVI)

No.	Nilai Indeks Vegetasi	Kerapatan Vegetasi
1.	-1 - 0,25	Kehijauan Rendah
2.	0,25 - 0,35	Kehijauan Sedang
3.	0,35 - 1	Kehijauan Tinggi

Sumber: Peraturan Menteri Kehutanan Republik Indonesia, 2003

Pada penelitian ini, data yang diolah berupa data citra Landsat 8 dan Landsat 9 saluran Red dan NIR. Tahap ini menghasilkan peta kerapatan vegetasi tahun 2014 dan 2024 di Kabupaten Garut. Data hasil NDVI digunakan dalam perhitungan nilai emisivitas yang akan digunakan untuk memperoleh estimasi Land Surface Temperature.

b. Pengolahan Normalized Difference Built-up Index (NDBI)

Parameter kedua adalah *Normalized Difference Built-up Index* (NDBI) yang merupakan metode untuk mendeteksi kawasan terbangun dengan memanfaatkan teknik penginderaan jauh, khususnya melalui analisis gelombang elektromagnetik inframerah pendek dan inframerah dekat. NDBI diterapkan untuk mengidentifikasi distribusi area terbangun di Kabupaten Garut dengan algoritma berikut (Zha et al., 2003).

$$NDBI = \frac{(SWIR - NIR)}{(SWIR + NIR)} \dots (9)$$

Keterangan:

NDBI = Normalized Difference Built-up Index

SWIR = Nilai reflektansi inframerah gelombang pendek

NIR = Nilai reflektansi inframerah dekat

Data yang sudah dilakukan pengolahan menggunakan algoritma NDBI, akan menghasilkan klasifikasi sebagai berikut (Adeanti & Harist, 2018):

Tabel 3. 6 Klasifikasi Normalized Difference Built-up Index (NDBI)

No.	Nilai Indeks Bangunan	Kerapatan Bangunan
1.	-1 - 0	Non Bangunan
2.	0 - 0,1	Kerapatan Bangunan Rendah
3.	0,1 - 0,2	Kerapatan Bangunan Sedang
4	0,2 - 0,3	Kerapatan Bangunan Tinggi

Sumber: Adeanti & Harist, 2018

Pada penelitian ini, data yang diolah berupa data citra Landsat 8 dan Landsat 9 saluran SWIR dan NIR. Tahap ini menghasilkan peta kerapatan bangunan tahun 2014 dan 2024 di Kabupaten Garut.

c. Pengolahan Modified Normalized Difference Water Index (MNDWI)

Parameter ketiga adalah *Modified Normalized Difference Water Index* (MNDWI) yang merupakan metode untuk mendeteksi keberadaan badan air dengan memanfaatkan teknik penginderaan jauh, khususnya melalui analisis gelombang elektromagnetik inframerah dekat dan hijau. Dalam penelitian ini, MNDWI diterapkan untuk mengidentifikasi keberadaan badan air dan non badan air di Kabupaten Garut dengan algoritma berikut (Xu, 2006).

$$MNDWI = \frac{(Green-SWIR)}{(Green+SWIR)}....(10)$$

Keterangan:

MNDWI = Modified Normalized Difference Water Index

Green = Nilai reflektansi kanal hijau

SWIR = Nilai reflektansi kanal inframerah gelombang pendek

Data yang sudah dilakukan pengolahan menggunakan algoritma MNDWI, akan menghasilkan klasifikasi sebagai berikut: (Xu, 2006)

Tabel 3. 7 Klasifikasi Modified Normalized Difference Water Index (MNDWI)

No.	Nilai Indeks Air	Tingkat Kebasahan
1.	-1 - 0	Kebasahan Rendah
2.	> 0 - 1	Kebasahan Tinggi

Sumber: Xu, 2006

Pada penelitian ini, data yang diolah berupa data citra Landsat 8 dan Landsat 9 saluran Green dan SWIR. Tahap ini menghasilkan peta keberadaan badan air dan tingkat kebasahan pada tahun 2014 dan 2024 di wilayah perkotaan Kabupaten Garut.

d. Pengolahan Land Surface Temperature (LST)

Salah satu indikator utama dalam analisis *Urban Heat Island* (UHI) dan *Environmental Critically Index* (ECI) yang menginterpretasikan suhu permukaan tanah. Berdasarkan spesifikasi citra satelit Landsat 8, diketahui bahwa citra ini dilengkapi dengan saluran thermal, yaitu band 10 dan band 11 yang dapat digunakan untuk mengidentifikasi distribusi suhu permukaan tanah atau *Land Surface Temperature* (LST). Proses perhitungan LST diawali dengan mengkonversi nilai piksel dalam *Digital Number* (DN) menjadi *Spectral*

Radiance (SR). Setelah tahap konversi selesai, perhitungan dilanjutkan dengan menentukan suhu atmosfer pada *Top of Atmosphere (*ToA) *Brightness Temperature*. Berikut algoritma LST yang digunakan pada penelitian ini (Fadlin, Suparjo, et al., 2020):

$$L\lambda = ML*Qcal + AL(11)$$

$$T = \frac{K2}{\ln{(\frac{K1}{L\lambda} + 1)}}$$
....(12)

Keterangan:

 $L\lambda = Spectral\ radiance\ (W/m2*sr*\mu m)$

ML = Radiance multiplicative scaling factor

Qcal = Corresponds to band 10

AL = Raddiance additive scaling factor

T = ToA brightness temperature (K)

K2 = Konstanta konversi termal 2

K1 = Konstanta konversi termal 1

Persamaan yang digunakan untuk menghitung *Land Surface Temperature* (LST) mengikuti metode konversi ke derajat Celsius, sebagaimana dikemukakan oleh Sobrino et al. (2004) dalam Fadlin, et al. (2020).

$$LST = \frac{T}{1 + (w * \frac{T}{p}) In(e)} \dots (13)$$

Keterangan:

LST = Suhu Permukaan Tanah (celcius)

w = Wavelength of emitted radiance (11.5 μ m)

 $p = h * c / \sigma (1,438 * 10-2 mK)$

h = Konstanta Planck (6.626 *10-34 Js)

c = Kecepatan cahaya (2,998 * 108 m/s)

 σ = Konstanta Boltzman (1.38 * 10-23 J/K)

e = Emisivitas lahan terbangun 0,937

e. Pengolahan Enviromental Critically Index (ECI)

Tahap akhir dalam proses pengolahan dan analisis data penelitian ini adalah menghitung Environmental Critically Index (ECI). Indeks kekritisan lingkungan adalah kondisi kritis lingkungan akibat peningkatan suhu permukaan tanah, berkurangnya kerapatan vegetasi, dan meningkatnya lahan terbangun. Perhitungan ECI pada penelitian ini dilakukan dengan menggunakan persamaan yang sudah dimodifikasi oleh (Sukojo & Hauzan, 2023) dengan mengubah parameter NDWI menjadi MNDWI yang pada penelitian sebelumnya, (Fadlin et.al., 2020) menambahkan 2 indikator baru, yaitu indeks kawasan terbangun (NDBI) dan indeks air (NDWI). Sebelum melakukan perhitungan ECI, langkah awal yang dilakukan adalah menormalisasi nilai spektral dari setiap parameter yang digunakan. Normalisasi ini dilakukan dengan cara merentangkan (streched) nilai spektral untuk setiap indikator ke dalam skala 0-1. Proses ini bertujuan untuk menyamakan skala antar parameter ke dalam rentang 0 hingga 1 agar hasil analisis tidak bias akibat perbedaan satuan atau nilai antar parameter. Persamaan yang digunakan dalam perhitungan ECI adalah sebagai berikut (Sukojo & Hauzan, 2023):

$$ECI = \frac{LST * NDBI (streched)}{NDVI * MNDWI (streched)} \dots (14)$$

Keterangan:

ECI = Indeks Kekritisan Lingkungan

LST = Suhu Permukaan Tanah

NDBI = Indeks Kerapatan Bangunan

NDVI = Indeks Kerapatan Vegetasi

MNDWI = Indeks Kebasahan/Badan Air

Bobot masing-masing parameter yang digunakan untuk menghitung indeks kekritisan lingkungan menggunakan *Environmental Criticality Index* ditentukan secara setara, yaitu masing-masing sebesar 25%. Bobot ini diberikan untuk

mencerminkan kontribusi yang seimbang dari keempat parameter utama, yaitu NDVI, NDBI, LST, dan MNDWI. Pendekatan pembobotan yang merata digunakan untuk menjaga kesederhanaan metode, serta menghindari dominasi salah satu parameter terhadap hasil akhir indeks. Selain itu, setiap parameter telah melalui proses normalisasi ke dalam skala 0–1, sehingga dapat dibandingkan secara langsung dan digabungkan dalam satu model indeks. Penggunaan bobot setara juga mengacu pada studi sebelumnya seperti pada penelitian oleh Fadlin et al., (2020) dan Bashit (2019) yang menyusun indeks spasial berbasis indikator lingkungan dengan pendekatan proporsional serupa.

Tabel 3. 8 Bobot Perhitungan Environmental Critically Index

No.	Parameter	Keterangan	Bobot
1.	NDVI	Menunjukkan kerapatan vegetasi yang	25%
		berfungsi sebagai peneduh alami dan	
		penyeimbang iklim mikro	
2.	NDBI	Mengidentifikasi tingkat kerapatan	25%
		bangunan sebagai indikator dominasi	
		lahan terbangun	
3.	MNDWI	Menunjukkan keberadaan dan	25%
		kelembaban area berair/bervegetasi	
		basah yang berperan dalam menjaga	
		kelembaban ekosistem.	
4.	LST	Menggambarkan suhu permukaan yang	25%
		mencerminkan intensitas urban heat	
		island akibat minimnya vegetasi dan	
		banyaknya permukaan keras.	
	1	Total	100%

Sumber: Hasil Analisis, 2025

Environmental Critically Index merupakan representasi dari nilai indeks kekritisan lingkungan, sedangkan LST, NDVI, NDBI, dan MNDWI yang telah direntangkan (stretched) adalah nilai indikator yang telah dinormalisasi. Hasil perhitungan ECI diklasifikasikan ke dalam empat tingkat kelas, yakni kelas tidak

kritis, kritis tingkat rendah, kritis tingkat sedang, dan kritis tingkat tinggi. Klasifikasi ini bertujuan untuk menggambarkan tingkat tekanan atau kerentanan lingkungan di suatu wilayah. Proses pengelompokan ke dalam empat kategori tersebut dilakukan dengan memanfaatkan nilai ambang batas (threshold) yang ditentukan berdasarkan distribusi data, serta menggunakan metode klasifikasi kuantil (quantile classification). Quantile classification adalah salah satu metode klasifikasi data yang digunakan dalam pemetaan tematik, khususnya untuk membagi data numerik ke dalam kelas-kelas yang memiliki jumlah data (fitur/spatial units) yang sama di setiap kelasnya. Pendekatan ini memungkinkan pembagian data menjadi kelas-kelas yang proporsional, sehingga setiap kelas mencakup jumlah piksel atau area yang relatif sama, dan memudahkan dalam interpretasi spasial kondisi lingkungan. Tabel 3.8 menunjukkan hasil klasifikasi kuantil menjadi 4 kelas kekritisan.

Tabel 3. 9 Klasifikasi Environmental Critically Index (ECI)

Kelas	Klasifikasi
1	Tidak Kritis
2	Kritis Tingkat Rendah
3	Kritis Tingkat Sedang
4	Kritis Tingkat Tinggi

Sumber: Sukojo & Hauzan, 2023

Hasil penerapan algoritma ECI menghasilkan indeks yang menunjukkan tingkat kekritisan lingkungan di Kabupaten Garut pada tahun 2014 dan 2024. Berdasarkan hasil tersebut, dilakukan analisis untuk mengidentifikasi luas perubahan kekritisan lingkungan dengan menggunakan data penginderaan jauh.

2. Pengolahan Uji Akurasi Hasil LST, NDVI, NDBI, MNDWI, dan ECI

Pengolahan uji akurasi merupakan tahap penting dalam penelitian ini untuk memastikan validitas hasil analisis data penginderaan jauh. Parameter yang digunakan, yaitu Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), Modified

Normalized Difference Water Index (MNDWI), dan Environmental Critically Index (ECI). Proses validasi harus dilakukan untuk meminimalkan kesalahan dan meningkatkan tingkat kepercayaan terhadap hasil penelitian. Uji akurasi dilakukan dengan membandingkan hasil pengolahan data citra satelit dengan data referensi yang diperoleh dari observasi lapangan atau sumber data sekunder yang terpercaya. Salah satu metode uji akurasi yang digunakan adalah Confusion Matrix, yang membandingkan hasil klasifikasi parameter NDVI, NDBI, dan MNDWI dari citra satelit dengan data referensi untuk mengukur tingkat ketepatan (accuracy) dan koefisien kappa. Tahap ini penting untuk memastikan bahwa nilai LST, NDVI, NDBI, MNDWI, dan ECI yang dihasilkan akurat dan dapat digunakan sebagai dasar dalam analisis perubahan tingkat kekritisan lingkungan di wilayah perkotaan Kabupaten Garut.

Pengolahan Perubahan Indeks Kekritisan Lingkungan pada Tahun 2014 dan Tahun 2024

Pada tahap ini dijelaskan proses teknis dalam pengolahan data spasial guna memperoleh informasi perubahan tingkat kekritisan lingkungan secara multitemporal antara tahun 2014 dan 2024 di wilayah perkotaan Kabupaten Garut. Proses diawali dengan akuisisi dan praproses data citra satelit Landsat 8 (tahun 2014) dan Landsat 9 (tahun 2024), yang mencakup koreksi radiometrik dan geometrik, serta pemotongan area (*clipping*) berdasarkan batas administrasi wilayah perkotaan Kabupaten Garut. Seluruh pengolahan data dilakukan menggunakan perangkat lunak ArcGIS Pro, dengan pemanfaatan berbagai alat seperti *Raster Calculator*, *Reclassify*, *Raster to Polygon*, *Union*, dan *Spatial Join* untuk mendukung analisis spasial secara menyeluruh.

Parameter pembentuk Environmental Criticality Index (ECI) dalam penelitian ini mencakup Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), dan Modified Normalized Difference Water Index (MNDWI). Masing-masing parameter dihitung menggunakan kombinasi kanal citra sesuai algoritma yang relevan, seperti perhitungan LST dari kanal termal (Band 10) dengan pendekatan Top of

58

Atmosphere (ToA) dan koreksi emisivitas permukaan. Semua raster parameter dinormalisasi dalam rentang 1–255 guna menyetarakan skala nilai dan mencegah dominasi dari salah satu parameter.

Perhitungan ECI dilakukan dengan pendekatan berbobot aditif berdasarkan formula yang dimodifikasi dari Senanayake et al. (2013), dan disesuaikan dengan karakteristik wilayah perkotaan Kabupaten Garut. Hasil dari proses ini menghasilkan raster ECI tahun 2014 dan 2024, yang selanjutnya diklasifikasikan ke dalam empat kategori tingkat kekritisan: Tidak Kritis, Kekritisan Rendah, Kekritisan Sedang, dan Kekritisan Tinggi, menggunakan metode *quantile classification*.

Untuk menganalisis dinamika perubahan tingkat kekritisan, dilakukan penghitungan selisih antara nilai ECI tahun 2024 dan 2014 menggunakan metode raster differencing (ECI_2024 – ECI_2014) melalui Raster Calculator. Nilai hasil pengurangan tersebut kemudian direklasifikasi menjadi tiga kategori perubahan: Membaik (nilai negatif), Tetap (nilai nol), dan Makin Kritis (nilai positif). Klasifikasi ini mencerminkan pergeseran kondisi lingkungan berdasarkan arah dan besar perubahan indeks. Selanjutnya, hasil raster perubahan ECI dikonversi menjadi bentuk vektor, lalu dilakukan spatial join dengan batas administrasi desa untuk mengidentifikasi setiap perubahan yang terjadi di tingkat unit desa.

Hasil akhir pengolahan disajikan dalam bentuk peta tematik perubahan kekritisan lingkungan dan tabel statistik deskriptif, yang menggambarkan sebaran spasial wilayah yang mengalami peningkatan atau penurunan tingkat kekritisan. Informasi ini menjadi dasar untuk interpretasi kondisi lingkungan dan dapat dimanfaatkan dalam pengambilan keputusan kebijakan serta perencanaan wilayah yang berkelanjutan di kawasan perkotaan Kabupaten Garut.

4. Pengolahan Hubungan antara Parameter LST, NDVI, NDBI, dan MNDWI dengan ECI

Hubungan antara *Land Surface Temperature* dengan variabel lain dianalisis menggunakan metode statistik untuk mengidentifikasi korelasi dan pola yang signifikan. Penelitian ini menerapkan regresi dan korelasi linear sederhana. Regresi

linear sederhana merupakan salah satu metode statistik yang berfungsi untuk menguji sejauh mana hubungan sebab akibat antara variabel faktor penyebab (X) terhadap variabel akibatnya. Faktor penyebab dilambangkan dengan X atau disebut sebagai *predictor* dan variabel akibat dilambangkan dengan Y atau disebut juga dengan *response*. Sedangkan analisis korelasi berfungsi untuk mengukur kekuatan hubungan linear antara dua dua variabel dan untuk mengetahui bentuk hubungan antara dua variabel tersebut dengan hasil yang sifatnya kuantitatif. Berikut merupakan rumus yang digunakan untuk regresi dan korelasi:

$$Y = a + bX \dots (15)$$

Keterangan:

Y = Variabel terikat

X = Variabel bebas

a = Konstanta

b = Koefisien regresi

$$r_{xy} = \frac{n\Sigma xy - \Sigma x\Sigma y}{\sqrt{n * \Sigma x^2 - (\Sigma x)^2 \sqrt{n * \Sigma y^2 - (\Sigma y)^2}}} \dots (16)$$

Keterangan:

 r_{xy} = Korelasi XY

n = Jumlah data

X = Data X

Y = Data Y

 Σx = Total jumlah variabel X

 Σy = Total jumlah variabel Y

 Σx^2 = Kuadrat total jumlah variabel X

 Σy^2 = Kuadrat total jumlah variabel Y

Tabel 3. 10 Variabel X dan Y pada Penelitian

Variabel Independent (X)	Variabel Dependent (Y)
1. Land Surface Temperature	Environmental Critically Index

	Variabel Independent (X)	Variabel Dependent (Y)
2.	Normalized Difference Vegetation Index	
3.	Normalized Difference Built- up Index	
4.	Modified Normalized Difference Water Index	

Sumber: Hasil Analisis, 2025

Koefisien korelasi (r) merupakan ukuran statistik yang menggambarkan derajat kekuatan dan arah hubungan linier antara dua variabel. Nilai r berkisar antara -1 hingga +1. Apabila nilai r mendekati +1, maka hubungan antara kedua variabel bersifat positif kuat, artinya peningkatan pada variabel independen akan diikuti oleh peningkatan pada variabel dependen. Sebaliknya, jika r mendekati -1, maka hubungan bersifat negatif kuat, yang berarti peningkatan salah satu variabel akan diikuti oleh penurunan variabel lainnya. Nilai r mendekati 0 menandakan hubungan yang sangat lemah atau tidak ada hubungan linier antar variabel. Dalam penelitian ini, penghitungan nilai r dilakukan melalui analisis regresi linear sederhana pada masing-masing pasangan variabel menggunakan perangkat lunak IBM SPSS Statistics. Interpretasi kekuatan hubungan ini merujuk pada klasifikasi tingkat korelasi, seperti yang disajikan dalam Tabel, untuk menunjukkan kategori hubungan mulai dari sangat lemah hingga sangat kuat.

Tabel 3. 11 Klasifikasi Tingkat Hubungan Berdasarkan Nilai Koefisien (r)

Nilai R	Tingkat Hubungan
0.00 - 0.199	Sangat lemah
0.20 - 0.399	Lemah
0.40 – 0.599	Sedang

Nilai R	Tingkat Hubungan
0.60 - 0.799	Kuat
0.80 – 1.000	Sangat kuat

Sumber: Sugiyono, 2017

Selain nilai korelasi, analisis regresi juga menghasilkan nilai signifikansi (Sig.) atau p-value yang berfungsi sebagai dasar untuk menentukan apakah hubungan antar variabel yang ditemukan benar-benar signifikan secara statistik atau hanya terjadi secara kebetulan. Nilai signifikansi ini menjadi indikator penting dalam penelitian kuantitatif, karena mampu memberikan justifikasi ilmiah terhadap validitas hubungan antar variabel. Pada penelitian ini, digunakan tingkat signifikansi sebesar 5% ($\alpha = 0.05$), yang berarti peneliti menerima peluang kesalahan sebesar 5% dalam pengambilan keputusan.

Apabila nilai Sig. yang dihasilkan lebih kecil dari 0,05, maka hipotesis nol (H₀) ditolak dan hipotesis alternatif (H₁) diterima. Hal ini menunjukkan bahwa terdapat hubungan yang nyata dan signifikan antara parameter lingkungan dengan nilai *Environmental Critically Index* (ECI). Sebaliknya, apabila nilai Sig. ≥ 0,05, maka hubungan tersebut dianggap tidak signifikan, sehingga kontribusi variabel independen terhadap ECI tidak cukup kuat untuk dijadikan dasar pengambilan kesimpulan. Nilai Sig. untuk masing-masing parameter disajikan secara rinci dalam tabel hasil regresi linear sederhana. Dengan demikian, pengujian ini tidak hanya memperlihatkan arah dan kekuatan hubungan antar variabel, tetapi juga memberikan landasan yang lebih kokoh dalam menarik kesimpulan mengenai sejauh mana setiap parameter lingkungan memberikan kontribusi terhadap tingkat kekritisan lingkungan di wilayah penelitian.

Tabel 3. 12 Kriteria Pengambilan Keputusan Berdasarkan Nilai Signifikansi (p)

Nilai p (Sig.)	Interpretasi	Keputusan
p < 0.01	Sangat signifikan	Tolak H₀
$0.01 \le p < 0.05$	Signifikan	Tolak H₀

Nilai p (Sig.)	Interpretasi	Keputusan
$0.05 \le p < 0.10$	Cenderung signifikan	Pertimbangkan
	(marginal)	konteks
p ≥ 0.10	Tidak signifikan	Gagal menolak H₀
p < 0.01	Sangat signifikan	Tolak H₀

Sumber: Arikunto, 2010

Melalui fitur-fitur analisis statistik yang tersedia dalam perangkat lunak IBM SPSS Statistics, nilai hubungan antara variabel dihitung menggunakan metode regresi linear sederhana. Dalam penelitian ini, variabel-variabel independen berupa LST, NDVI, NDBI, dan MNDWI dianalisis terhadap variabel dependen berupa nilai Environmental Criticality Index (ECI). Data yang telah diolah kemudian dianalisis dalam SPSS untuk memperoleh nilai signifikansi (Sig.), koefisien determinasi (R²), serta grafik residual dan scatter plot yang menggambarkan kekuatan dan arah hubungan antar variabel. Hasil analisis tersebut memberikan gambaran kuantitatif mengenai hubungan antara parameter lingkungan dan tingkat kekritisan lingkungan di Kabupaten Garut pada tahun 2014 dan 2024.

3.6.3 Tahap Analisis Data

 Analisis Perubahan Parameter Land Surface Temperature, Normalized Difference Vegetation Index, Normalized Difference Built-up Index, dan Normalized Difference Water Index Wilayah Perkotaan Kabupaten Garut Pada Tahun 2014 Dan 2024.

Tahap analisis ini merupakan bagian penting dalam proses penelitian yang bertujuan untuk memahami dinamika kondisi lingkungan di wilayah perkotaan Kabupaten Garut dalam rentang waktu satu dekade, yakni antara tahun 2014 dan 2024. Dalam tahapan ini, peneliti melakukan pengolahan dan interpretasi data berbasis citra satelit untuk mengevaluasi kondisi suhu permukaan lahan, tutupan vegetasi, kerapatan bangunan, serta keberadaan badan air menggunakan empat parameter utama, yaitu *Land Surface Temperature* (LST), *Normalized*

63

Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), dan Normalized Difference Water Index (MNDWI).

Citra satelit Landsat 8 OLI/TIRS dan Landsat 9 OLI/TIRS digunakan sebagai sumber utama dalam analisis ini. Setelah dilakukan pra-pemrosesan terhadap citra meliputi koreksi radiometrik, koreksi geometrik, dan pemotongan (*clipping*) area studi langkah selanjutnya adalah menghitung masing-masing indeks menggunakan rumus-rumus algoritmik yang telah terstandarisasi dalam kajian penginderaan jauh.

Analisis parameter lingkungan secara multi-temporal diperlukan untuk memperoleh informasi baru yang diinginkan. Salah satu metode untuk menginterpretasi data penginderaan jauh adalah melalui *hybrid interpretation* atau interpretasi gabungan, yang menggabungkan pendekatan visual dan digital. Interpretasi citra visual melibatkan pengambilan data spasial dari citra penginderaan jauh berdasarkan karakteristik spasial objek dalam citra, yang diidentifikasi menggunakan elemen-elemen interpretasi. Sementara itu, interpretasi digital merupakan analisis kuantitatif terhadap pola spektral objek yang direpresentasikan oleh nilai piksel (Himayah et al., 2020).

Setiap indeks memiliki makna ekologis yang berbeda. LST memberikan informasi mengenai suhu permukaan yang berkaitan erat dengan fenomena iklim mikro dan efek pulau panas perkotaan. NDVI digunakan untuk mengidentifikasi tutupan vegetasi dan tingkat kehijauan lahan. NDBI mengindikasikan keberadaan dan kerapatan permukiman atau bangunan buatan, sementara MNDWI dimanfaatkan untuk mendeteksi keberadaan badan air serta tingkat kelembaban di permukaan.

Data hasil perhitungan dari masing-masing indeks kemudian diklasifikasikan secara spasial agar distribusi data antar wilayah lebih mudah untuk dianalisis secara komparatif. Wilayah penelitian dibagi ke dalam beberapa kelas tingkat suhu, vegetasi, bangunan, dan air yang proporsional, memungkinkan peneliti mengamati pola distribusi spasial secara adil meskipun data tidak berdistribusi normal.

Setelah klasifikasi dilakukan, peneliti membandingkan hasil analisis antara tahun 2014 dan 2024 untuk melihat adanya perubahan atau pergeseran kondisi lingkungan. Hasil perbandingan ini menjadi dasar untuk mengidentifikasi tren perkembangan wilayah, baik berupa degradasi lingkungan, peningkatan tutupan hijau, ekspansi kawasan terbangun, maupun penyusutan badan air. Selain itu, hasil analisis ini juga menjadi indikator awal dalam menilai tingkat kekritisan lingkungan wilayah perkotaan Kabupaten Garut secara menyeluruh.

2. Analisis Indeks Kekritisan Lingkungan di Kabupaten Garut.

Analisis tingkat kekritisan lingkungan dengan menerapkan algoritma Environmental Critically Index (ECI) merupakan metode untuk memperoleh informasi mengenai kondisi lingkungan yang kritis melalui data penginderaan jauh. Algoritma ECI pertama kali dikembangkan oleh Senanayake et al. (2013) yang mengintegrasikan data Land Surface Temperature (LST) dan Normalized Difference Vegetation Index (NDVI) dengan merentangkan nilai spektralnya, kemudian membagi nilai LST dengan NDVI. Kemudian, Sukojo & Hauzan (2023) melakukan modifikasi dengan mengintegrasikan Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), dan Normalized Difference Water Index (MNDWI) pada algoritma ECI. Hasil dari perhitungan algoritma diatas memberikan informasi mengenai tingkat kekritisan lingkungan. Penentuan tingkat kekritisan lingkungan ini menggunakan data citra satelit Landsat 8 yang direkam pada tahun 2014 dan 2024.

Hasil pengolahan menggunakan algoritma ECI dilakukan klasifikasi menjadi 4 kelas, yaitu tidak kritis, kritis tingkat rendah, kritis tingkat sedang, dan kritis tingkat tinggi. Klasifikasi tingkat kekritisan lingkungan dilakukan dengan metode *quantile classificatin* untuk mengelompokkan gejala, fenomena, dan peristiwa khususnya yang berkaitan dengan lingkungan dan kebencanaan. Hasil klasifikasi ECI kemudian dilakukan analisis dan validasi menggunakan beberapa pendekatan. Interpretasi visual dilakukan berdasarkan pemahaman peneliti dalam menganalisis hasil atau peta ECI pada tahun 2014 dan 2024. Sementara itu, validasi dilakukan melalui observasi lapangan untuk

65

memeriksa secara langsung kondisi tingkat kekritisan lingkungan berdasarkan hasil pengolahan data. Setelah interpretasi visual selesai, langkah selanjutnya adalah interpretasi digital. Interpretasi digital terhadap hasil ECI Kabupaten Garut tahun 2014 dan 2024 dibagi menjadi 4 kelas yang berbeda. Setiap kelas memiliki nilai piksel yang merepresentasikan informasi nilai spektral dari data penginderaan jauh.

3. Analisis Perubahan Tingkat Kekritisan Lingkungan Di Wilayah Perkotaan Kabupaten Garut Pada Tahun 2014 Dan 2024.

Analisis perubahan tingkat kekritisan lingkungan merupakan tahapan penting dalam penelitian ini, karena menjadi dasar untuk mengetahui dinamika kondisi lingkungan di wilayah perkotaan Kabupaten Garut selama rentang waktu sepuluh tahun, yaitu dari tahun 2014 hingga 2024. Tahapan ini dilakukan untuk menjawab tujuan penelitian, yakni melihat pergeseran atau perubahan tingkat kekritisan lingkungan dalam konteks pertumbuhan wilayah, aktivitas manusia, serta tekanan lingkungan yang terjadi selama satu dekade terakhir.

Metode yang digunakan dalam tahap ini adalah analisis spasial overlay menggunakan perangkat lunak ArcGIS Pro. Analisis overlay dilakukan dengan menumpangsusunkan dua layer hasil perhitungan *Environmental Criticality Index* (ECI) pada tahun 2014 dan 2024. Kedua layer ECI ini merupakan hasil integrasi dari beberapa parameter lingkungan yang sebelumnya telah diolah yaitu LST, NDVI, NDBI, dan MNDWI Setiap parameter mencerminkan kondisi vegetasi, tingkat pembangunan, suhu permukaan, dan keberadaan badan air, yang secara bersamaan memberikan gambaran mengenai tingkat tekanan terhadap lingkungan.

Sebelum dilakukan analisis perubahan, masing-masing layer ECI tahun 2014 dan 2024 terlebih dahulu diklasifikasikan ke dalam empat kategori tingkat kekritisan, yaitu Tidak Kritis, Kekritisan Rendah, Kekritisan Sedang, dan Kekritisan Tinggi. Proses klasifikasi ini bertujuan untuk menyederhanakan interpretasi visual serta mempermudah analisis perbandingan multitemporal antar tahun.

Setelah proses klasifikasi selesai, dilakukan overlay dengan metode pengurangan raster (ECI_2024 - ECI_2014) menggunakan *Raster Calculator* untuk melihat sejauh mana perubahan kategori kekritisan lingkungan terjadi pada setiap unit spasial. Hasil dari pengolahan ini kemudian direklasifikasi kembali menjadi tiga kategori utama perubahan, yaitu Makin Kritis (nilai positif), Tetap (nilai nol), dan Semakin Membaik (nilai negatif), guna mengidentifikasi arah perubahan kondisi lingkungan di wilayah studi. Melalui overlay ini, dapat diketahui:

- Lokasi-lokasi yang mengalami perubahan menjadi lebih kritis.
- Wilayah yang mengalami perbaikan atau penurunan kekritisan.
- Area yang mengalami kekritisan tetap.

Selain itu, analisis ini juga menghasilkan peta perubahan kekritisan lingkungan yang merepresentasikan pola spasial perubahan tersebut. Hasil ini dilengkapi dengan tabel hasil rekapitulasi perubahan berdasarkan luasan yang mengalami pergeseran tingkat kekritisan. Peneliti dapat mengidentifikasi wilayah yang perlu mendapatkan perhatian lebih dalam pengelolaan lingkungan serta wilayah yang menunjukkan perbaikan.

4. Analisis Hubungan antara Parameter LST, NDVI, NDBI, dan MNDWI dengan ECI

Analisis regresi linear sederhana digunakan sebagai metode statistik untuk mengetahui hubungan antara masing-masing parameter lingkungan yaitu Land LST, NDVI, NDBI, dan MNDWI sebagai variabel independen (X), terhadap *Environmental Critically Index* (ECI) sebagai variabel dependen (Y). Pemilihan regresi linear sederhana bertujuan untuk mengukur seberapa besar pengaruh satu variabel bebas terhadap variabel terikat secara terpisah dan langsung, serta untuk mengidentifikasi parameter mana yang paling dominan dalam menjelaskan variasi kekritisan lingkungan di wilayah studi.

Konsep dasar dari regresi linear sederhana mengasumsikan adanya hubungan linier antara dua variabel, serta bahwa data residual (selisih antara nilai aktual dan nilai prediksi) terdistribusi normal, homogen, dan independen. Hubungan linier tersebut dicerminkan oleh nilai koefisien korelasi (R), yang

menunjukkan kekuatan dan arah hubungan antara variabel X dan Y. Nilai R berkisar antara -1 hingga +1, di mana nilai mendekati +1 menunjukkan hubungan positif yang kuat, mendekati -1 menunjukkan hubungan negatif yang kuat, dan nilai mendekati 0 mengindikasikan tidak adanya hubungan yang signifikan. Sementara itu, nilai R² (koefisien determinasi) mengindikasikan proporsi variasi dalam variabel Y yang dapat dijelaskan oleh variabel X.

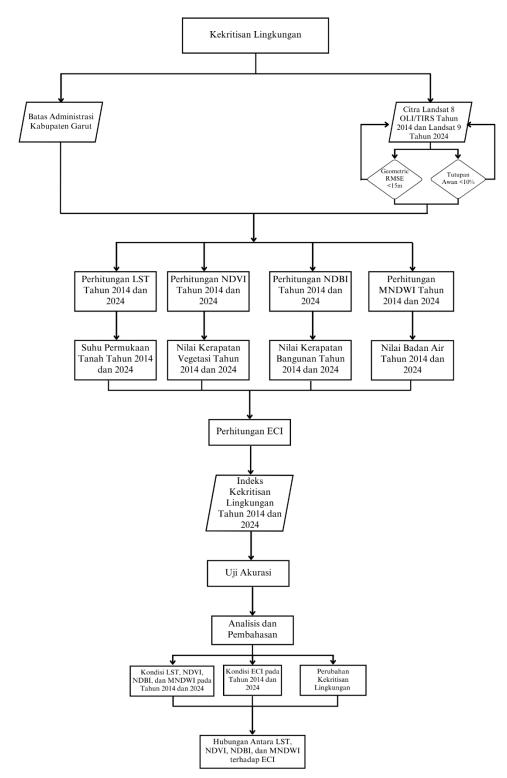
Hasil analisis statistik terhadap masing-masing parameter menunjukkan bahwa NDVI dan NDBI memiliki hubungan yang signifikan dengan ECI, sedangkan LST dan MNDWI menunjukkan hubungan yang sangat lemah atau tidak signifikan. Nilai R tertinggi diperoleh dari variabel NDVI, diikuti oleh NDBI, yang keduanya memiliki nilai signifikansi (p-value) < 0,05, sehingga memenuhi syarat sebagai model regresi yang layak. Sebaliknya, variabel MNDWI menghasilkan nilai R yang rendah dengan p-value > 0,05, yang berarti tidak terdapat pengaruh yang signifikan secara statistik terhadap nilai ECI. Hal ini menunjukkan bahwa parameter kelembaban (MNDWI) kurang relevan dalam menjelaskan variasi tingkat kekritisan lingkungan di kawasan perkotaan dengan dominasi lahan terbangun.

Penggunaan pendekatan regresi linear sederhana dalam penelitian ini sejalan dengan studi terdahulu seperti yang dilakukan oleh Alvian Aji Purboyo (2022), yang mengkaji hubungan antara parameter lingkungan dan kekritisan lingkungan di Kota Depok. Parameter NDVI dan LST terbukti memberikan pengaruh yang signifikan terhadap ECI melalui pendekatan korelasi linier. Pendekatan ini juga menekankan pentingnya pemahaman bahwa korelasi tidak berarti kausalitas, tetapi dapat menjadi indikator awal untuk menjelaskan arah dan kekuatan hubungan antara variabel lingkungan dan tingkat kekritisan. Secara keseluruhan, hasil regresi linear sederhana dalam penelitian ini menunjukkan bahwa tingkat kekritisan lingkungan (ECI) lebih sensitif terhadap suhu permukaan (LST), perubahan vegetasi (NDVI), dan tingkat pembangunan lahan (NDBI) dibandingkan kelembaban permukaan (MNDWI). Pendekatan regresi yang digunakan juga memberikan dasar kuantitatif dalam menilai efektivitas masing-masing parameter sebagai indikator lingkungan. Penemuan

ini menegaskan pentingnya pemilihan variabel yang relevan dan valid dalam studi penginderaan jauh serta perencanaan lingkungan berkelanjutan, khususnya dalam konteks wilayah perkotaan yang terus mengalami perubahan penggunaan lahan secara dinamis.

3.7 Hipotesis Penelitian

Hipotesis merupakan suatu pernyataan atau dugaan sementara yang dibuat berdasarkan teori atau fenomena yang diamati, yang kebenarannya masih perlu dibuktikan melalui proses pengumpulan dan analisis data. Hipotesis memiliki peran penting sebagai dasar untuk menguji secara empiris hubungan antara variabel bebas dan variabel terikat. Uji hipotesis dilakukan untuk menentukan apakah suatu hubungan atau pengaruh yang ditemukan dalam data penelitian terjadi secara kebetulan atau dapat digeneralisasikan pada populasi yang lebih luas. Hipotesis dirumuskan untuk menguji pengaruh dari empat parameter lingkungan yaitu LST, NDVI, NDBI, dan MNDWI terhadap tingkat kekritisan lingkungan, yang direpresentasikan dalam bentuk *Environmental Criticality Index* (ECI). Setiap parameter lingkungan tersebut berfungsi sebagai variabel bebas (X), sementara ECI bertindak sebagai variabel terikat (Y).


Pengujian hipotesis dilakukan menggunakan analisis regresi linear sederhana, yang bertujuan untuk mengukur kekuatan dan arah hubungan linier antara satu variabel bebas dengan satu variabel terikat. Pemilihan regresi linear sederhana dalam penelitian ini disesuaikan dengan tujuan untuk mengetahui kontribusi masing-masing parameter lingkungan secara individual terhadap ECI. Teknik ini tidak hanya memberikan informasi tentang koefisien hubungan (R) dan signifikansinya (Sig.), tetapi juga mengukur seberapa besar proporsi variasi variabel terikat yang dapat dijelaskan oleh variabel bebas melalui nilai koefisien determinasi (R²). Berikut merupakan rumusan hipotesis dalam penelitian ini:

- Hipotesis 1 (Hubungan NDVI terhadap ECI)
 - H₀₁ (Hipotesis Nol): Tidak terdapat pengaruh yang signifikan antara nilai NDVI terhadap nilai ECI.

- H₁₁ (Hipotesis Alternatif): Terdapat pengaruh yang signifikan antara nilai NDVI terhadap nilai ECI.
- Hipotesis 2 (Hubungan NDBI terhadap ECI)
 - H₀₂: Tidak terdapat pengaruh yang signifikan antara nilai NDBI terhadap nilai ECI.
 - H₁₂: Terdapat pengaruh yang signifikan antara nilai NDBI terhadap nilai ECI.
- Hipotesis 3 (Hubungan MNDWI terhadap ECI)
 - H₀₃: Tidak terdapat pengaruh yang signifikan antara nilai MNDWI terhadap nilai ECI.
 - H₁₃: Terdapat pengaruh yang signifikan antara nilai MNDWI terhadap nilai ECI.
- Hipotesis 4 (Hubungan LST terhadap ECI)
 - H₀₄: Tidak terdapat pengaruh yang signifikan antara nilai LST terhadap nilai ECI.
 - H₁₄: Terdapat pengaruh yang signifikan antara nilai LST terhadap nilai ECI.

Pengujian keempat hipotesis dalam penelitian ini dilakukan pada tingkat signifikansi $\alpha=0.05$ atau dengan taraf kepercayaan sebesar 95%. Artinya, peluang kesalahan dalam pengambilan keputusan hanya sebesar 5%. Penentuan keputusan uji didasarkan pada nilai signifikansi (Sig.) yang dihasilkan melalui uji regresi linear sederhana. Apabila nilai Sig. < 0.05, maka hipotesis nol (Ho) ditolak dan hipotesis alternatif (H1) diterima. Kondisi ini menunjukkan bahwa parameter lingkungan yang diuji terbukti memiliki pengaruh yang signifikan terhadap nilai *Environmental Critically Index* (ECI). Sebaliknya, apabila nilai Sig. \geq 0.05, maka hipotesis nol (Ho) diterima dan hipotesis alternatif (H1) ditolak, sehingga dapat disimpulkan bahwa parameter lingkungan tersebut tidak memberikan pengaruh yang signifikan terhadap ECI.

3.8 Diagram Alur Penelitian

Gambar 3. 2 Diagram Alur Penelitian