APLIKASI MODEL ANTRIAN MULTISERVER DENGAN VACATION PADA SISTEM ANTRIAN DI BANK BCA CABANG UJUNG BERUNG

Elyzabeth, - (2014) APLIKASI MODEL ANTRIAN MULTISERVER DENGAN VACATION PADA SISTEM ANTRIAN DI BANK BCA CABANG UJUNG BERUNG. Other thesis, Universitas Pendidikan Indonesia.

[img]
Preview
Text
S_MAT_1006638_Title.pdf

Download (118kB) | Preview
[img]
Preview
Text
S_MAT_1006638_Table_of_content.pdf

Download (140kB) | Preview
[img]
Preview
Text
S_MAT_1006638_Abstract.pdf

Download (360kB) | Preview
[img]
Preview
Text
S_MAT_1006638_Chapter1.pdf

Download (207kB) | Preview
[img] Text
S_MAT_1006638_Chapter2.pdf
Restricted to Repository staff only

Download (522kB) | Request a copy
[img]
Preview
Text
S_MAT_1006638_Chapter3.pdf

Download (441kB) | Preview
[img] Text
S_MAT_1006638_Chapter4.pdf
Restricted to Repository staff only

Download (481kB) | Request a copy
[img]
Preview
Text
S_MAT_1006638_Chapter5.pdf

Download (316kB) | Preview
[img]
Preview
Text
S_MAT_1006638_Bibliography.pdf

Download (135kB) | Preview
[img] Text
S_MAT_1006638_Appendix.pdf
Restricted to Repository staff only

Download (475kB) | Request a copy
Official URL: http://repository.upi.edu

Abstract

Antrian merupakan kegiatan yang sering dijumpai dalam kehidupan sehari-hari. Pelaku utama dalam antrian adalah customer yang membutuhkan pelayanan serta server yang memberikan pelayanan. Sistem antrian dengan laju kedatangan dan pelayanan yang berdistribusi Poisson dan waktu pelayanan yang berdistribusi Eksponensial dilambangkan dengan M/M/c, dimana c adalah banyaknya server. Vacation pada sistem antrian adalah waktu tunda server melayani customer dalam waktu tertentu saat jam operasional. Sistem antrian dengan laju kedatangan dan laju pelayanan yang berdistribusi Poisson serta waktu pelayanan dan waktu vacation yang berdistribusi Eksponensial dimana server yang ada lebih dari satu dan server tidak secara serentak melakukan vacation disebut dengan Asynchronous Multiple Vacation Model (M/M/c (AS, MV)). Berdasarkan studi kasus yang dilakukan di Bank BCA Cabang Ujung Berung dimana pengamatan dipusatkan pada antrian untuk transaksi tunai di atas 10 juta rupiah, dengan banyaknya server sebanyak 3 orang maka model antriannya menjadi (M/M/3 (AS, SV)) dan diperoleh laju kedatangan (λ) 24 orang per jam dan laju pelayanan (μ) 13 orang per jam serta Ekspektasi banyaknya customer dalam antrian (L_v^((c))) 4 orang dan Ekspektasi waktu menunggu customer dalam sistem (W_v^((c))) 10 menit. Queuing is the most likely happensin daily life. Those who queue are customers who need service and server that gives service. Queuing system due to arrival and service rate which distribute in Poisson and service time which distributes in Exponensial are symbolized M/M/c, in which c is the quantity of server. Vacation on queuing system is the duration which server delays to serve the customers at a certain time during operational hour. Queuing system due to arrival and service rate which distribute in Poisson along with service and vacation time which distributes in Exponensial which has more than one server and it doesn’t do vacation at the same time is called Asynchronous Multiple Vacation Model (M/M/c (AS, MV)). Based on study which is done in BCA Ujung Berung, we focus on queuing for cash transaction of 10 million rupiahs above, whereas there are three servers and we pay attention to the vacation queuing model which becomes (M/M/3 (AS, MV)) and results arrival rate (λ) 24 people per hour and service rate (μ) 13 people per hour and expectation on the quantity of customer in the queue (L_v^((c))) 4 people and expectation of customer’s queuing time (W_v^((c)))10 minutes.

Item Type: Thesis (Other)
Additional Information: No. Panggil : S MAT ELY a-2014
Uncontrolled Keywords: Antrian, Customer, Multiserver, Vacation
Subjects: L Education > L Education (General)
Divisions: Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam > Jurusan Pendidikan Matematika > Program Studi Matematika (non kependidikan)
Depositing User: Staff DAM
Date Deposited: 19 Mar 2015 02:56
Last Modified: 19 Mar 2015 02:56
URI: http://repository.upi.edu/id/eprint/14176

Actions (login required)

View Item View Item