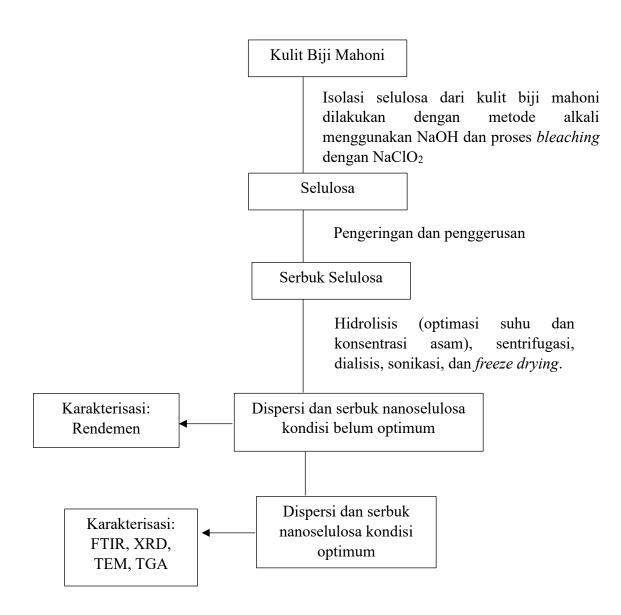
BAB III

METODE PENELITIAN


3.1. Waktu dan Tempat Penelitian

Penelitian dilakukan dari bulan Februari 2024 hingga Juli 2024 di Laboratorium Riset Kimia FPMIPA Universitas Pendidikan Indonesia, Bandung. Penelitian ini dilakukan dengan metode eksperimen. Kegiatan dalam penelitian ini terdiri dari isolasi selulosa dari kulit biji mahoni, kemudian selulosa yang didapatkan diisolasi kembali menjadi nanoselulosa. Lalu nanoselulosa yang didapat diuji karakteristik gugus fungsi, kristalinitas, ukuran partikel, morfologi, dan sifat termal.

3.2. Desain Penelitian

Penelitian dilakukan dalam beberapa tahap seperti yang ditunjukkan pada Gambar 3.1. Tahapan penelitian yang akan dilakukan meliputi:

- (1) Isolasi selulosa dari kulit biji mahoni.
- (2) Isolasi nanoselulosa dari selulosa kulit biji mahoni.
- (3) Karakterisasi nanoselulosa.

Gambar 3. 1 Alur Penelitian Isolasi Selulosa dan Isolasi Nanoselulosa

3.3. Alat dan Bahan

Alat yang digunakan pada penelitian ini adalah:

- a. Isolasi selulosa: Gelas kimia, *hot plate*, *stirrer bar*, neraca analitik, gelas ukur, spatula, batang pengaduk, gunting/*cutter*, corong *buchner*, erlenmeyer vakum, ayakan mesh No. 100, *blender*, oven, termometer, pH meter.
- b. Isolasi nanoselulosa: Neraca analitik, gelas kimia, termometer, gelas ukur, *hot plate*, sentrifugasi, *ultrasonic cleaner*, *freeze-dried*, reaktor hidrolisis, tabung dialisis, *probe sonicator*.
- c. Karakterisasi: FTIR, XRD, TEM, TGA, PSA.
 Bahan yang digunakan pada penelitian ini adalah kulit biji mahoni,
 NaOH 17,5%, asam asetat (CH₃COOH), natrium klorit (NaClO₂)
 2%, aquades, asam sulfat (H₂SO₄) 25%, 30%, 35%, 40%, 45%, 50%,
 55%, dan kertas saring whatman No. 42.

3.4. Prosedur Penelitian

3.4.1 Persiapan Kulit Biji Mahoni

Kulit biji mahoni yang berwarna coklat dan kering dipisahkan dari bijinya. Kemudian kulit biji mahoni dikeringkan dengan oven selama 8 jam pada suhu 80°C, hal tersebut bertujuan untuk mengurangi kadar air yang ada pada kulit biji mahoni. Setelah kering, kulit biji mahoni dihaluskan menggunakan *blender* hingga diperoleh serbuk halus. Setelah itu, bubuk biji mahoni diayak menggunakan ayakan 100 *mesh* agar serbuk yang diperoleh lebih halus dan memiliki ukuran yang seragam sehingga luas permukaannya akan lebih besar.

3.4.2 Isolasi Selulosa dari Kulit Biji Mahoni

Isolasi selulosa dilakukan dengan beberapa tahap, yaitu alkalinasi dan *bleaching*. Proses alkalinasi dilakukan dengan menimbang 50 mL serbuk kulit biji mahoni dan dimasukkan ke gelas kimia 500 mL.

Kemudian ditambahkan natrium hidroksida (NaOH) 17,5% 500 mL dan dipanaskan pada suhu 80°C sambil diaduk menggunakan stirrer bar selama 3 jam. Setelah proses alkalinasi, dilakukan bleaching dengan menambahkan natrium klorit (NaClO₂) 2% sebanyak 500 mL dan dipanaskan pada suhu 70°C sambil diaduk dengan stirrer bar selama 2 jam. Kemudian ditambahkan asam asetat hingga pH mencapai 4, karena ketika pH dibawah 6 akan membentuk senyawa korosif yang bertanggung jawab atas pemutihan selulosa, tapi jika pH dibawah 2 laju pemutihan terlalu cepat dan dikhawatirkan akan merusak serat selulosa, sehingga pH yang optimal adalah 3,5 - 4 (Septevani et al., 2018). Setelah pH mencapai 4, diamkan semalam hingga terbentuk dua fasa, kemudian pisahkan fasa atas dari fasa bawah yang nantinya akan di bleaching kembali. Proses bleaching ini akan diulang hingga 6 siklus untuk memperoleh endapan yang berwarna putih. Setelah endapan didapatkan, saring dengan kertas whatman No. 42, lalu dikeringkan dengan oven pada suhu 90°C selama 8 jam, lalu timbang padatan selulosa yang sudah kering.

3.4.3 Isolasi Nanoselulosa dari Selulosa Kulit Biji Mahoni

Proses isolasi nanoselulosa dari kulit biji mahoni dilakukan dengan variasi konsentrasi asam sulfat, dan waktu hidrolisis. Variasi konsentrasi asam sulfat yang digunakan adalah 25%, 30%, 35%, 40%, 45%, 50%, dan 55%, pada suhu 40°C. Waktu hidrolisis bervariasi mulai dari 30 menit, 35 menit, 40 menit, 45 menit, 50 menit, dan 55 menit. Dengan rasio asam sulfat terhadap selulosa adalah 50 mL/gram (Anwar et al., 2021). Variasi tersebut bertujuan untuk mengetahui konsentrasi asam sulfat dan waktu hidrolisis yang optimal.

Isolasi nanoselulosa dari selulosa kulit biji mahoni dilakukan melalui beberapa tahap utama. Proses diawali dengan optimasi konsentrasi asam sulfat (H₂SO₄) untuk hidrolisis yang dilakukan dengan memasukkan larutan asam sulfat 25% sebanyak 50 mL ke

29

reaktor hidrolisis kemudian dipanaskan menggunakan waterbath dan

hotplate hingga suhu asam sulfat mencapai 40°C. Setelah itu,

tambahkan selulosa sebanyak 1 gram sambil diaduk dengan *magnetic*

stirrer dengan kecepatan tinggi selama 30 menit.

Hasil hidrolisis di quenching dengan cara memasukkannya ke

gelas kimia yang berisi aquades sebanyak 500 mL untuk

menghentikan hidrolisis. Kemudian, dispersi yang dihasilkan

dipisahkan dengan endapannya lalu disentrifugasi dengan kecepatan

3000 rpm selama 10 menit. Setelah itu, endapan yang diperoleh

disonikasi dengan ultrasonic cleaner selama 20 menit, kemudian

didialisis menggunakan aquades dengan bantuan dialysis tube hingga

mencapai pH 5, kemudian dispersi yang didapatkan disonikasi dengan

ultrasonic cleaner selama 100 menit, lalu disonikasi kembali dengan

probe sonicator selama 65 menit. Tahap tersebut diulangi dengan

mengubah konsentrasi asam sulfat menjadi 30%, 35%, 40%, 45%,

50%, dan 55%.

Setelah optimasi konsentrasi asam sulfat, tahap berikutnya adalah

optimasi waktu hidrolisis. Konsentrasi asam sulfat yang digunakan

adalah yang optimal, yaitu 30%. Tahap ini dilakukan sama seperti

tahap sebelumnya, dengan variasi waktu hidrolisis: 30 menit, 35

menit, 40 menit, 45 menit, 50 menit, dan 55 menit, dalam reaktor

hidrolisis pada suhu 40°C yang kemudian dikeringkan dengan metode

freeze drying.

Proses hidrolisis ini bertujuan untuk memecahkan mikrofibril.

Penggunaan asam sulfat bertujuan untuk menghasilkan nanoselulosa

dengan ukuran lebih seragam dan polidispersi yang kecil (Hartati et

al., 2023). Kemudian, nanoselulosa dengan kondisi yang optimum

dikarakterisasi dengan FTIR, XRD, PSA, TEM, dan TGA.

Reka Salwa Nabila, 2025

ISOLASI NANOSELULOSA DARI KULIT BIJI MAHONI (SWIETENIA MAHAGONI) DENGAN METODE

3.4.4 Penentuan Hasil Selulosa dari Kulit Biji Mahoni

Penentuan hasil selulosa dilakukan dengan membandingkan massa selulosa akhir dengan massa kulit biji mahoni awal dengan persamaan:

Rendemen (%) =
$$\frac{\text{Massa selulosa}}{\text{Massa kulit biji mahoni}} \times 100\%$$
 (7)

3.4.5 Penentuan Hasil Nanokristalin Selulosa dari Kulit Biji Mahoni

Penentuan hasil nanokristalin selulosa dilakukan dengan membandingkan massa selulosa akhir dengan massa kulit biji mahoni awal dengan persamaan:

Rendemen (%) =
$$\frac{\text{Massa nanoselulosa}}{\text{Massa selulosa}} \times 100\%$$
 (8)

3.4.6 Karakterisasi Nanoselulosa Amorf dari Kulit Biji Mahoni

a. Analisis FTIR

Karakterisasi menggunakan FTIR bertujuan untuk mengidentifikasi gugus fungsi pada nanokristalin selulosa dari kulit biji mahoni. Karakterisasi dilakukan dengan menggunakan pelet KBr. Serbuk nanoselulosa dicampur dengan KBr dengan perbandingan 1:99. Nanoselulosa dan KBr digerus hingga tercampur merata. Setelah penggerusan, campuran diletakkan pada cetakan pelet kemudian ditekan dengan penekan hidrolik hingga terbentuk pelet. Lalu pelet diletakkan dalam *holder* dan dianalisis menggunakan FTIR pada bilangan gelombang 4000-400 cm⁻¹.

b. Analisis XRD

Analisis XRD dilakukan untuk menganalisis struktur polimorf dan alomorf, indeks kristalinitas (CI), dan ukuran kristalit. Nanoselulosa dianalisis dalam bentuk serbuk kering yang dilakukan dengan cara memasukkan sampel ke dalam *sample*

holder yang selanjutkan diratakan menggunakan kaca preparate, dan dilakukan dengan.radiasi CuKα (λ =1,54 Å) pada rentang 2θ antara 5-90° (Anwar et al., 2021).

c. Analisis Termal TGA

Analisis termal TGA dilakukan untuk menentukan stabilitas termal nanoselulosa. Massa tertentu dari setiap sampel dipanaskan dari suhu 25°C hingga 550°C dengan laju pemanasan 5°C per menit dalam atmosfer nitrogen (Anwar et al., 2021). Sampel yang sudah ditimbang dimasukkan ke *crucible* kemudian mulai dianalisis setelah mengatur *heating rate*, rentang suhu, dan gas yang digunakan.

d. Analisis Morfologi TEM

Analisis TEM dilakukan untuk mengetahui morfologi atau bentuk internal dari nanoselulosa (Adhika et al., 2019). Analisis ini dilakukan dengan memasukkan sampel yang berukuran nano ke grid yang berukuran 3 mm, sehingga nantinya akan mengalami perbesaran. Syarat sampel TEM adalah transparan terhadap elektron (<100 nm), memiliki area yang luas, kontras yang baik, stabil terhadap penembakan elektron, dan tidak boleh mudah menguap.

e. Analisis Ukuran Partikel PSA

Analisis PSA dilakukan untuk mengetahui ukuran partikel. Diameter partikel yang diperoleh dari PSA adalah diameter hidrodinamik (dH), yaitu diameter bola keras yang berdifusi dengan kecepatan yang sama seperti partikel yang diukur. Untuk partikel non-sferis, PSA akan memberikan diameter bola yang memiliki koefisien difusi translasi rata-rata yang sama dengan partikel yang diukur. Oleh karena itu, untuk partikel berbentuk jarum, pengukuran diameter partikel dengan PSA akan memberikan diameter partikel yang lebih besar dari diameter sebenarnya. Namun, PSA memberikan informasi tentang ukuran

32

partikel dalam sistem massal (Anwar et al., 2021). Analisis sampel

dengan PSA dilakukan dengan menghomogenkan sampel,

kemudian dimasukkan ke kuvet PSA, yang selanjutnya akan

dianalisis.