BAB 1

PENDAHULUAN

1.1 Latar Belakang Penelitian

`Kopi merupakan salah satu tanaman perkebunan yang banyak dibudidakan di Indonesia karena memiliki nilai ekonomi yang tinggi. Dua jenis kopi yang paling umum ditanam di Indonesia yaitu robusta dan arabika (Diah dkk., 2018). Pada tahun 2021, konsumsi kopi mencapai 5 juta kantong (60 kg/kantong) dan produksi terus meningkat, yaitu 786.2 ribu ton pada dan 794.8 ribu ton pada tahun 2022 (Rizaty, 2022). Indonesia memiliki beberapa provinsi penghasil utama kopi dengan kontribusi produksi yang signifikan. Lima provinsi dengan produksi terbesar di Indonesia adalah Sumatera Selatan, Lampung, Aceh, Sumatera Utara, dan Jawa Timur. Di Provinsi Sumatera Utara, terdapat area perkebunan kopi seluas 95.263 hektar dengan total produksi mencapai 74.510 ton (Direktorat Jenderal Perkebunan, 2021). Salah satu wilayah penghasil kopi di provinsi ini adalah kabupaten Mandailing Natal, yang dikenal dengan kopi Arabika Mandailing. Kabupaten tersebut memiliki kebun kopi seluas 564 hektar dan menghasilkan sekitar 533 ribu ton kopi setiap tahunnya (BPS Sumatera Utara, 2020). Data ini menunjukkan bahwa Kabupaten Mandailing Natal berperan penting dalam industri kopi nasional dan memiliki potensi besar untuk terus berkembang dalam sektor perkebunan kopi.

Ampas kopi merupakan residu dari proses penyeduhan biji kopi yang mengandung serat, selulosa, dan senyawa organik yang bermanfaat (Figueiredo dkk., 2021). Peningkatan produksi kopi berdampak pada bertambahnya limbah ampas kopi yang kini mulai dimanfaatkan sebagai bahan baku potensial (Yunidar, 2024). Secara kimia, ampas kopi mengandung 31,26% selulosa, 17,32% lignin, dan 7,25% hemiselulosa (Malarat dkk., 2023). Perlakuan *pre-treatment* alkali*bleaching* meningkatkan kadar selulosa dengan menghilangkan lignin, hemiselulosa, dan abu, yang disertai perubahan warna sebagai indikator keberhasilan permurnian (Collazo dkk., 2018). Selulosa merupakan biopolimer yang melimpah di Indonesia dengan sifat biokompatibel, biodegradable, ekonomis. Selulosa tersusun dari rantai linier glukosa dengan ikatan β-1,4-glikosidik (Moon

2

dkk., 2011). Sumber utama selulosa berasal dari polisakarida dalam berbagai jenis tumbuhan yang umumnya terkombinasi dengan biopolimer lain. (Gautam dkk., 2010). Keberlimpahan sumber ini menjadikan selulosa sebagai bahan yang ramah lingkungan dan berpotensi menggantikan material sintetis dalam berbagai aplikasi industri. Selulosa alami diperoleh dari berbagai jenis biomassa dapat diolah lebih lanjut menjadi material dengan skala mikro dan nano (Azeredo dkk., 2017; Brinchi dkk., 2013; Sanjay dkk., 2018).

Nanoselulosa merupakan material generasi baru berbasis sumber daya terbarukan dengan kekuatan dan kekakuan tinggi, sehingga memiliki potensi untuk digunakan pada berbagai aplikasi (Perdoch dkk., 2022). Teknik yang paling umum digunakan untuk mengekstrak nanoselulosa adalah hidrolisis asam (Kargarzadeh dkk., 2017). Secara umum, nanoselulosa dapat diklasifikasikan ke dalam dua kelompok utama yaitu, material berstruktur nano yang meliputi mikrokristal selulosa dan mikrofibril selulosa dan nanofiber yang meliputi nanofibril selulosa (CNF) dan nanokristalin selulosa (CNC) (Trache dkk., 2017; Hussin dkk., 2019; Pennells dkk., 2020). Nanoselulosa telah dapat diproduksi dalam skala industri dan dapat diaplikasikan dalam berbagai bidang kehidupan seperti material nanokomposit, produk biomedis, perekat kayu, serat dan tekstil berkelanjutan, food coatings, film antimikroba, produk kertas, kosmetik, dan masih banyak lagi aplikasi yang terus berkembang (Moon dkk., 2016; Thomas dkk., 2018). Permintaan yang tinggi terhadap nanoselulosa berbasis tanaman telah menyebabkan deforestasi dan memicu ketidakseimbangan ekologis karena nanoselulosa diperoleh dari kayu dan bahan tanaman lainnya (Brown, 2004). Maka dari itu, pengolahan limbah ampas kopi menjadi nanoselulosa dapat dijadikan salah satu solusi untuk permasalahan deforestasi.

Pada penelitian sebelumnya, SEKI (2025) mengisolasi selulosa dari ampas kopi arabika asal Honduras dan Nikaragua dengan membandingkan lima metode ekstraksi kimia yaitu NaClO₂ (C1), kombinasi HNO₃-NaClO₂ (C2), H₂O₂ 10% (C3),

H₂O₂ 15% (C4), dan H₂O₂ 20% (C5). Kandungan selulosa tertinggi (96,7%) diperoleh pada C2, indeks kristalinitas tertinggi (66,3%), ukuran partikel terkecil, dan stabilitas termal tertinggi (T.max 312°C) pada C5, sedangkan *whiteness index* tertinggi (71,24%) pada C1. C5 diniliai paling efektif karena meningkatkan kristalinitas dan stabilitas termal. Pada penelitian Malarat dkk (2023) mengolah ampas kopi yang mengandung >30% selulosa menjadi *Nanocellulose Coffee Pulp* (NCP) untuk memperkuat matriks polivinil alkohol (PVA). NCP meningkatkan sifat mekanis dan termal *film* komposit serta berpotensi digunakan pada kemasan ramah lingkungan. Penelitian lainnya diakukan oleh Zulnazri (2022) yang memanfaatkan kulit kopi arabika dari limbah roasting untuk menghasilkan nanofibril selulosa (CNF) melalui hidrolisis HCl berkonsentrasi rendah. Ektraksi awal menggunakan HNO₃-NaNO₂, delignifikasi dengan NaOH-Na₂SO₃, *bleaching* dengan NaOCl-H₂O₂, dan hidrolisis HCl 8-15%. Hasil optimal dicapai pada HCl 10% selama 2 jam dengan kristalinitas 80,66% dan yield 47,9% pada 100°C. CNF yang dihasilkan sesuai untuk material biokompatibel di bidang medis.

Kebaharuan penelitian ini adalah penggunaan ampas kopi arabika Mandailing sebagai sumber nanoselulosa belum pernah dilakukan. Pada penelitian ini dilakukan isolasi selulosa dari ampas kopi arabika Mandailing dengan metode alkali-bleaching menggunakan natrium hidroksida (NaOH) 5% pada proses alkali. NaOH dengan konsentrasi 5% berfungsi untuk menghilangkan komponen nonselulsoa seperti hemiselulosa, lignin, dan senyawa pengotor lain dari ampas kopi serta pada konsentrasi 5% cukup efektif untuk memecah struktur lignoselulosa tanpa merusak rantai selulosa. Hidrogen peroksida (H₂O₂) 20% pada proses bleaching berfungsi untuk mengoksidasi dan memutihkan lignin yang tersisa dengan mengubah kromofor lignin menjadi senyawa tak berwarna melalui reaksi oksidasi yang tidak dapat balik. Pada konsentrasi 20%, hasil bleaching meningkatkan indeks kritstalinitas dan stabilitas termal (SEKI, 2025). Kemudian dilakukan isolasi nanoselulosa dari selulosa ampas kopi arabika Mandailing melalui proses optimasi hidrolisis asam dengan beberapa variasi konsentrasi Asam Sulfat (H₂SO₄) yaitu 25%, 30%, 35%, 40%, dan 45%. Berikutnya, beberapa karakterisasi

4

dilakukan seperti FTIR, XRD, PSA, TEM, dan TGA untuk melihat dan

menjelaskan sifat termal serta sifat fisika kimia dari selulosa dan nanoselulosa dari

ampas kopi arabika Mandailing.

1.2 Rumusan Masalah

Penelitian ini dilakukan untuk menjawab pertanyaan yang telah dirumuskan sebagai

berikut:

1. Berapakah konsentrasi asam sulfat yang optimum pada isolasi nanoselulosa

dari ampas kopi arabika Mandailing?

2. Berapakah rendemen selulosa yang diperoleh dari ampas kopi arabika

Mandailing dengan metode alkali-bleaching?

3. Berapakah rendemen nanoselulosa yang diperoleh dari ampas kopi arabika

Mandailing dengan metode hidrolisis asam?

4. Bagaimana karakteristik dari selulosa dan nanoselulosa dari ampas kopi

arabika Mandailing?

1.3 Tujuan Penelitian

Berdasarkan rumusan masalah diatas, tujuan dilakukannya penelitian ini yaitu,

sebagai berikut:

1. Mengetahui konsentrasi asam sulfat (H₂SO₄) yang optimum pada isolasi

nanoselulosa dari ampas kopi arabika Mandailing.

2. Mengetahui jumlah rendemen selulosa dari ampas kopi arabika

Mandailing dengan cara alkali-bleaching.

3. Mengetahui jumlah rendemen nanoselulosa dari ampas kopi arabika

Mandailing dengan cara hidrolisis asam.

4. Mengetahui karakteristik dari sifat termal dan sifat fisika-kimia selulosa

dan nanoselulosa dari ampas kopi Mandailing.

1.4 Manfaat Penelitian

Adapun manfaat dari penelitian ini yaitu, sebagai berikut:

Salwa Latisha Xyla Risnandar, 2025

- 1. Memberikan inovasi terbaru untuk limbah pangan untuk menmbah nilai produk pada limbah ampas kopi arabika Mandailing.
- 2. Memberikan hasil analisa karakterisasi dari isolasi selulosa dan nano selulosa dari ampas kopi arabika Mandailing.

1.5 Ruang Lingkup Penelitian

Batasan penelitian ini hanya berfokus pada yaitu, sebagai berikut:

- 1. Isolasi selulosa dari ampas kopi arabika Mandailing dengan metode alkali-bleaching.
- 2. Isolasi nanoselulosa dengan metode hidrolisis asam.
- 3. Struktur seperti gugus fungsi, morfologi permukaan, dan termal.