BAB III

METODE PENELITIAN

3.1 Objek dan Subjek Penelitian

Objek yang diteliti dalam penelitian ini adalah utang luar negeri (Y), defisit tabungan-investasi (X₁), defisit transaksi berjalan (X₂), dan defisit anggaran (X₃). Variabel dependen atau variabel terikat adalah utang luar negeri, sementara variabel independen atau variabel bebas adalah defisit tabungan-investasi, defisit transaksi berjalan, dan defisit anggaran. Subjek yang diteliti dalam penelitian ini adalah negara Indonesia pada periode 1970-2023.

3.2 Metode Penelitian

Penelitian ini menggunakan pendekatan kuantitatif yang kemudian disusun menggunakan metode eksplanatori. Melalui pendekatan kuantitatif, maka dapat memungkinkan analisis data dengan angka yang objektif, terstruktur, terencana, maupun sistematis. Data yang digunakan adalah data sekunder yang berasal dari World Bank, Kementerian Keuangan, Badan Pusat Statistik (BPS), dan Federal Reserve Economic Data (FRED).

3.3 Desain Penelitian

3.3.1 Definisi Operasional Variabel

Tabel 3. 1 Operasional Variabel

Variabel Dependen						
Variabel	Konsep	Definisi	Sumber Data	Jenis		
		Operasional		Data		
Utang	Utang luar negeri	Utang luar	Data utang luar	Rasio		
Luar	merupakan utang-	negeri dapat	negeri Indonesia			
Negeri (Y)	utang penduduk	diukur dari	dapat diperoleh			
	(resident) yang	jumlah utang	dari World Bank,			
	berdomisili di suatu	pemerintah dan	begitu pula			
	wilayah tertentu dan	utang swasta di	dengan data laju			
	berteritori ekonomi,	Indonesia	PDB Indonesia			
	kepada yang bukan	kepada pihak	sebagai pengukur			
	penduduk (non-	asing atau luar	rasionya, lalu			
	resident) (Adella,	negeri, serta	disesuaikan			
	dkk., 2021, hlm.	rasionya	dengan tahun			
	280).	terhadap PDB	penelitian, yaitu			
		(Produk	1970-2023.			
		Domestik				
		Bruto)				
		Indonesia.				
Variabel Independen						
Defisit	Defisit tabungan-	Defisit	Data rasio	Rasio		
Tabungan-	investasi terjadi	tabungan-	tabungan			
Investasi	ketika tabungan	investasi dapat	domestik bruto			
(X_1)	domestik tidak	diukur	terhadap PDB			
	mencukupi untuk	berdasarkan	dan data rasio			
	membiayai	selisih antara	pembentukan			

Isna Herliani Nugraha, 2025

ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI UTANG LUAR NEGERI DI INDONESIA TAHUN 1970-2023

Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

	kebutuhan investasi	rasio tabungan	modal tetap bruto
	domestik di suatu	domestik bruto	terhadap PDB
	negara (Dornbusch,	terhadap PDB	dapat diperoleh
	1993, hlm. 33).	dan rasio	dari World Bank,
		pembentukan	lalu disesuaikan
		modal tetap	dengan tahun
		bruto terhadap	penelitian, yaitu
		PDB.	1970-2023.
Defisit	Defisit transaksi	Defisit	Data rasio ekspor Rasio
Transaksi	berjalan terjadi	transaksi	barang dan jasa
Berjalan	ketika jumlah impor	berjalan dapat	terhadap PDB
(X_2)	meningkat, namun	diukur	dan rasio impor
	jumlah ekspor	berdasarkan	barang dan jasa
	menurun di	selisih antara	terhadap PDB
	beberapa sektor	rasio ekspor	dapat diperoleh
	seperti sektor	barang dan jasa	dari World Bank,
	minyak dan gas	terhadap PDB	lalu disesuaikan
	(migas), non-migas,	dan rasio	dengan tahun
	maupun sektor jasa	impor barang	penelitian, yaitu
	(Perdana &	dan jasa	1970-2023.
	Sugiyanto, 2021,	terhadap PDB.	
	hlm. 3).		
Defisit	Defisit anggaran	Defisit	Data penerimaan Rasio
Anggaran	adalah selisih antara	anggaran dapat	pemerintah
(X_3)	penerimaan dan	diukur	terhadap PDB
	pengeluaran	berdasarkan	dan rasio belanja
	pemerintah, di mana	selisih antara	pemerintah
	pengeluaran atau	rasio	terhadap PDB
	belanja negara	penerimaan	dapat diperoleh
	melebihi	pemerintah	dari Kementerian

Isna Herliani Nugraha, 2025 ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI UTANG LUAR NEGERI DI INDONESIA TAHUN 1970-2023 Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

	penerimaan atau	terhadap PDB	Keuangan			
	pendapatan negara	dan rasio	Indonesia dan			
	(Samadi, 2010, hlm.	belanja	Badan Pusat			
	38).	pemerintah	Statistik (BPS),			
		terhadap PDB.	lalu disesuaikan			
			dengan tahun			
			penelitian, yaitu			
			1970-2023.			
Variabel Kontrol						
Suku	Suku bunga luar	Suku bunga	Data suku bunga Persen			
Bunga	negeri adalah suku	luar negeri	The Fed dapat			
Luar	bunga perkiraan dan	dapat diukur	diperoleh dari			
Negeri	sebagai acuan yang	dengan	Federal Reserve			
	digunakan oleh	menggunakan	Economic Data			
	bank-bank di	suku bunga	(FRED), lalu			
	berbagai negara,	The Fed yang	disesuaikan			
	baik negara maju	diterbitkan	dengan tahun			
	maupun	oleh Federal	penelitian, yaitu			
	berkembang untuk	Reserve.	1970-2023.			
	menarik investor					
	menanamkan					
	modalnya di negara					
	peminjam					
	(Tambunan dalam					
	Marliana dan Yasa,					

3.3.2 Teknik dan Alat Pengumpulan Data

2024, 725).

3.3.2.1 Teknik Pengumpulan Data

Penelitian ini menggunakan data sekunder atau data yang berasal dari pihak kedua. Teknik pengumpulan data yang digunakan dalam

Isna Herliani Nugraha, 2025

ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI UTANG LUAR NEGERI DI INDONESIA TAHUN 1970-2023

Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

penelitian ini adalah teknik dokumentasi, yaitu mengumpulkan, menganalisis, dan menafsirkan dokumen yang relevan dengan penelitian ini.

3.3.2.2 Alat Pengumpulan Data

Alat pengumpulan data yang digunakan dalam penelitian ini adalah melalui media elektronik komputer, di mana data elektronik tersebut berbentuk numerik dan berbasis data teks. Dalam penelitian ini, data yang diperoleh melalui teknik dokumentasi adalah data yang berkaitan dengan variabel terikat atau dependen (Y) yaitu utang luar negeri (dalam bentuk persentase rasio terhadap PDB), variabel-variabel tidak terikat atau independen (X) yaitu tingkat defisit tabungan-investasi (dalam bentuk persentase rasio terhadap PDB), tingkat defisit transaksi berjalan (dalam bentuk persentase rasio terhadap PDB), dan defisit anggaran (dalam bentuk persentase rasio terhadap PDB), serta variabel kontrol yaitu suku bunga luar negeri (dalam bentuk persen).

3.3.3 Teknik Analisis Data

Penelitian ini menggunakan teknik analisis data *Autoregressive Distributed Lag* (ARDL). Di mana teknik analisis ini merupakan kombinasi model *Autoregressive* (AR) dan *Distributed Lag* (DL). AR sendiri merupakan model yang menggunakan satu data masa lampau atau lebih dari variabel dependen, dan DL adalah model yang melibatkan data sekarang dengan data masa lampau dari variabel independen. Melalui ARDL ini, dapat dilihat pengaruh variabel dependen dari masa lampau terhadap nilai variabel dependen masa kini. Asumsi ARDL menyatakan bahwa suatu variabel dapat dipengaruhi oleh variabel itu sendiri tapi pada waktu lampau.

Teknik analisis data ARDL mempunyai banyak keunggulan, salah satunya adalah dapat diaplikasikan pada data *short series*, tidak memerlukan klasifikasi pra-estimasi variabel, dan tidak mementingkan tingkat stasioner yang sama maupun terkointegrasi pada ordo yang sama. Artinya, model ini dapat

dilakukan pada variabel I(0), I(1), maupun kombinasi keduanya, tetapi tidak bisa digunakan bila variabel I(2).

Beberapa pengujian dalam ARDL adalah uji akar unit (*unit root test*) untuk melihat stasioneritas data, penentuan lag optimal, estimasi ARDL, uji kointegrasi, uji jangka pendek dan jangka panjang, uji stabilitas, uji asumsi klasik, dan uji statistik yang terdiri dari uji R^2 , uji F, dan uji t.

3.3.3.1 Asumsi Klasik

Suatu model dapat dikatakan baik jika memiliki sifat BLUE (*Best, Linier, Unbiased, Estimator*), karena metode kuadrat terkecil akan mampu menghasilkan estimator yang memiliki sifat yang tidak bias, linier, maupun varian minimum. Beberapa pengujian asumsi yang digunakan yaitu uji multikolinearitas, uji heteroskedastisitas, dan uji autokorelasi.

3.3.3.1.1 Uji Multikolinearitas

Uji multikolinearitas dilakukan untuk melihat apakah terdapat hubungan linier antar variabel bebas. Model regresi dikatakan baik bila tidak terdapat korelasi tinggi di antara variabel bebasnya. Dengan melihat nilai *Variance Inflation Factor* (VIF) dan nilai toleransinya, dapat terdeteksi ada atau tidaknya masalah multikolinearitas dalam model. Model dikatakan tidak terdapat multikolinearitas jika nilai VIF setiap variabel kurang dari 10, begitu pula sebaliknya.

Hipotesis berdasarkan multikolinearitas adalah sebagai berikut:

- a) Nilai VIF < 0.05 maka H_0 ditolak dan ada masalah multikolinearitas
- b) Nilai VIF ≥ 0.05 maka H_0 tidak ditolak dan tidak ada masalah multikolinearitas

3.3.3.1.2 Uji Heteroskedastisitas

Uji heteroskedastisitas bertujuan untuk mengetahui apakah terdapat gangguan yang variannya sama dalam model regresi. Metode yang digunakan untuk uji heteroskedastisitas adalah Breusch-Pagan-Godfrey. Nilai Prob. Chi-Square akan dibandingkan dengan tingkat signifikansi kembali. Jika nilai Prob. Chi-Square lebih besar daripada tingkat signifikansi, maka tidak terdapat masalah heteroskedastisitas, begitu pula sebaliknya.

Hipotesis berdasarkan heteroskedastisitas adalah sebagai berikut:

- a) Prob. *Chi-Square* < 0,05 maka H₀ ditolak dan ada masalah heteroskedastisitas
- b) Prob. *Chi-Square* ≥ 0.05 maka H₀ tidak ditolak dan tidak ada masalah heteroskedastisitas

3.3.3.1.3 Uji Autokorelasi

Uji autokorelasi memiliki tujuan untuk mengetahui apakah model regresi terdapat korelasi antar variabel gangguan atau tidak di dalamnya. Pendekatan uji autokorelasi yang digunakan adalah Breusch dan Godfrey. Penentuan *lag* menggunakan *trial and error* sementara panjang *lag* ditentukan melalui kriteria Akaike dan Schwarz sehingga akan terlihat nilai Akaike terkecil. Kemudian nilai Prob. *Chi-Square* akan dibandingkan dengan tingkat signifikansi. Jika nilai Prob. *Chi-Square* lebih besar daripada tingkat signifikansinya, maka tidak terjadi autokorelasi, begitu pula sebaliknya.

Hipotesis berdasarkan autokorelasi adalah sebagai berikut:

- a) Prob. *Chi-Square* < 0,05 maka H₀ ditolak dan ada masalah autokorelasi
- b) Prob. Chi-Square ≥ 0.05 maka H_0 tidak ditolak dan tidak ada masalah autokorelasi

3.3.3.2 Uji Stasioner

Langkah pertama yang dilakukan untuk mengolah data *time series* adalah dengan uji akar unit (*unit root test*). Uji ini bertujuan untuk melihat apakah data yang digunakan stasioner atau tidak. Data dikatakan stasioner adalah ketika data cenderung mendekati nilai ratarata dan berfluktuasi di sekitar nilai rata-ratanya. Sementara data yang tidak stasioner (*random walk*) dapat menghasilkan regresi semu (*spurious regression*), atau regresi yang dapat menggambarkan hubungan antar dua variabel atau lebih, terlihat signifikan secara statistik padahal kenyataannya tidak.

Dalam penelitian ini, uji stasioneritas data akan menggunakan tes *Augmented Dickey-Fuller* (ADF). Di mana jika nilai mutlak t-ADF lebih besar dari nilai mutlak *MacKinnon Critical Values*-nya, maka data telah stasioner pada taraf nyata yang telah ditentukan. Hipotesis berdasarkan ADF adalah sebagai berikut:

- a) Nilai t-statistik ADF < Nilai kritis MacKinnon pada level 5% maka data tidak stasioner dan H₀ tidak ditolak.
- b) Nilai t-statistik ADF > Nilai kritis MacKinnon pada level 5% maka data stasioner dan H₀ ditolak.

Selain dilihat dari nilai t-ADF, dapat pula dilihat dari nilai probabilitasnya yaitu sebagai berikut:

- a) P-value > 0.05 maka terdapat *unit roots*, data tidak stasioner dan H₀ tidak ditolak.
- b) P-value < 0.05 maka tidak terdapat *unit roots*, data stasioner dan H_0 ditolak.

Kesimpulan hasil uji akar unit akan diperoleh dengan membandingkan nilai t-hitung dengan t-tabel pada tabel *Dickey-Fuller*.

Jika suatu data *time series* tidak stasioner pada orde nol, I(0), maka stasioner data tersebut dapat dicari melalui orde berikutnya, sehingga

dapat diperoleh tingkat stasioneritas pada orde ke-n (*first difference*) atau I(1), ataupun *second difference* atau I(2), dan seterusnya.

3.3.3.3 Penentuan Lag Optimal

Dalam uji stasioner, penentuan *lag* optimal merupakan salah satu permasalahannya. Karena seringkali suatu peubah bereaksi terhadap peubah lainnya, dalam suatu selang waktu (*lag*), maka *lag* optimal perlu dilakukan. Jika panjang *lag*-nya terlalu kecil, model tersebut tidak bisa digunakan karena kurang mampu menjelaskan hubungannya. Akan tetapi jika panjang *lag*-nya terlalu besar, maka derajat bebasnya (*degree of freedom*) akan menjadi lebih besar pula sehingga tidak efisien lagi untuk menjelaskan hubungannya.

Dalam model ARDL, *lag* penting dilakukan untuk dapat menunjukkan seberapa besar pengaruh selang waktu terhadap observasi, dan bisa menghilangkan masalah akibat autokorelasi dalam penelitian. Terdapat beberapa kriteria untuk menentukan panjang dari lag optimal seperti *Akaike Information Criterion* (AIC), *Final Prediction Error* (FPE), *Likelihood Rotation* (LR), *Schwarz Bayesian Criterion* (SBC), dan *Hannan-Quinn* (HQ). Ada pun formulasi dari AIC adalah sebagai berikut:

$$AIC = Log\left(\frac{\Sigma et^2}{N}\right) + 2K + N$$
 (3.1)

Di mana et^2 adalah jumlah residual kuadrat, N adalah jumlah sampel, dan K adalah jumlah peubah.

3.3.3.4 Estimasi ARDL

Model *Autoregressive Distributed Lag* atau ARDL merupakan salah satu model dalam ekonometrika, yang memasukkan nilai suatu variabel yang dapat menjelaskan nilai variabel masa kini dan masa lampau dari variabel dependen menjadi salah satu variabel penjelas melalui nilai *lag* dari variabel independen. Pengujian ARDL membutuhkan model

terbaik untuk bisa melakukan estimasi jangka pendek maupun jangka panjang.

Distributed-lag model menyertakan nilai masa kini dan masa lampau dari variabel penjelas, sementara autoregressive model mencakup satu atau lebih nilai lag dari variabel independen di antara variabel dependen. Model dasar yang dipakai secara sistematis dapat dijelaskan melalui persamaan berikut:

$$Y_t = \beta_0 + \beta_1 \log X_{1_t} + \beta_2 \log X_{2_t} + \beta_3 \log X_{3_t} + \beta_4 \log X_{4_t} + e_t$$
 (3.2)

Di mana Y_t adalah variabel dependen pada period eke-t, β_0 adalah konstanta, $logX_{1_t}$, $logX_{2_t}$, $logX_{3_t}$, $logX_{4_t}$ adalah variabel independen dalam bentuk logaritma natural, β_1 , β_2 , β_3 , β_4 adalah koefisien regresi dari masing-masing variabel independen, dan e_t adalah error term.

Untuk mengukur seberapa jauh model dapat terlihat, alias model *lag*-terdistribusi, maka dibuat persamaan sebagai berikut:

$$Y_{t} = \alpha + \beta_{0}X_{t} + \beta_{1}logX_{1_{t-1}} + \beta_{2}logX_{2_{t-1}} + \beta_{3}logX_{3_{t-1}} + \beta_{4}logX_{4_{t-1}} + e_{t}$$
(3.3)

Di mana a adalah konstanta atau intersep, X_t adalah variabel penjelas waktu sekarang, $log X_{1_{t-1}}$ adalah logaritma dari variabel ke-1 pada waktu t-1, $log X_{2_{t-1}}$ adalah logaritma dari variabel ke-2 pada waktu t-1, $log X_{3_{t-1}}$ adalah logaritma dari variabel ke-3 pada waktu t-1, $log X_{4_{t-1}}$ adalah logaritma dari variabel ke-4 pada waktu t-1.

Sedangkan persamaan model autoregresif adalah sebagai berikut:

$$Y_t = a + \beta X_t + \gamma Y_{T-1} + e_t$$
 (3.4)

Di mana X_t adalah variabel independen saat ini, β adalah koefisien dari X_t , Y_{T-1} adalah lag dari variabel dependen, dan γ adalah koefisien dari Y_{T-1} . Persamaan jangka pendek digambarkan sebagai berikut:

$$\sum_{i=0}^{n} \beta_i = \beta_0 + \beta_1 + \dots + \beta_k = \beta$$
 (3.5)

Di mana $\sum_{i=0}^{n} \beta_i$ adalah penjumlahan seluruh koefisien lag dari variabel independen, dan β_k adalah pengaruh variabel independen pada lag ke-k. Sementara persamaan jangka panjang adalah sebagai berikut:

$$\beta_i^* = \frac{\beta_i}{\sum \beta_i} = \frac{\beta_i}{\beta} \qquad (3.6)$$

Di mana β_i^* adalah koefisien standar/tertimbang (*normalized*), β_i adalah koefisien dari *lag* ke-I variabel independen, dan $\sum \beta_i$ atau β adalah jumlah dari seluruh koefisien *lag*.

Error Correction Term (ECT) digunakan dalam estimasi ARDL untuk mengetahui pengaruh dari jangka pendek ke jangka panjang. Nilai dari ECT dikatakan *valid* jika koefisiennya bernilai negatif dengan probabilitas signifikan pada level 5%. ECT ini dapat menunjukan kecepatan penyesuaian menuju jangka panjang.

3.3.3.4.1 Spesifikasi Model

Model ARDL yang digunakan dalam penelitian ini bertujuan untuk menganalisis pengaruh defisit tabungan-investasi (DTI), defisit transaksi berjalan (DTB), defisit anggaran (DA), dan suku bunga dunia (SBD) terhadap utang luar negeri (ULN) di Indonesia, baik dalam jangka pendek maupun jangka panjang. Spesifikasi model ARDL yang digunakan dalam penelitian ini secara umum dapat dituliskan sebagai berikut:

$$ULN_{t} = \alpha_{0} + \sum_{i=1}^{p} a_{i}ULN_{t-i} + \sum_{j=0}^{q_{1}} \beta_{j}DTI_{t-j} + \sum_{k=0}^{q_{2}} \gamma_{k}DTB_{t-k} + \sum_{l=0}^{q_{3}} \delta_{l}DA_{t-l} + \sum_{m=0}^{q_{4}} \theta_{m}SBD_{t-m} + \varepsilon_{t}$$
 (3.7)

Di mana ULN_t adalah utang luar negeri pada periode ke-t, DTI_t adalah defisit tabungan-investasi pada periode ke-t, DTB_t adalah defisit transaksi berjalan pada periode ke-t, DA_t adalah defisit anggaran pada periode ke-t, SBD_t adalah suku bunga dunia pada periode ke-t, p, q_1 , q_2 , q_3 , q_4 adalah banyaknya lag dari masing-masing variabel yang akan ditentukan berdasarkan kriteria

informasi (AIC, HQIC, atau SBIC), a_0 adalah konstanta, dan ε_t adalah error term.

3.3.3.5 Uji Kointegrasi (Bound Test)

Data berbentuk *time series* seringkali menunjukan kondisi non stasioner pada tingkat level, tapi menunjukan kondisi stasioner pada proses diferensiasi (Widarjono, 2007, hlm. 273). Jika variabel non stasioner, artinya kemungkinan besar terdapat hubungan secara jangka panjang di antara variabel. Oleh sebab itu, uji kointegrasi perlu dilakukan demi mengetahui apakah variabel independen dan variabel dependen terkointegrasi atau tidak.

Tujuan dari uji kointegrasi sendiri adalah untuk mengetahui apakah masing-masing variabel memiliki hubungan jangka panjang. *Bound test* adalah salah satu pendekatan yang dapat digunakan untuk menguji kointegrasi. Nilai F-statistik hitung nantinya akan dibandingkan dengan nilai kritis. Jika nilai F hitung lebih besar dari pada *upper bound* atau I(1) artinya terdapat hubungan kointegrasi, dan jika nilai F hitung lebih kecil dari *lower bound* atau I(0) artinya tidak terdapat hubungan kointegrasi.

Uji ini cocok digunakan dalam estimasi ARDL dibandingkan uji kointegrasi *Engle-Granger* ataupun uji kointegrasi *Johansen* karena pada saat estimasi ARDL, keduanya mengharuskan semua variabel stasioner pada ordo I(1), namun uji kointegrasi *Bound Test* tidak mengharuskan variabel stasioner pada ordo I(1) tersebut.

3.3.3.6 Uji Stabilitas

Dalam penentuan validitas model pada teknik analisis data ARDL, beberapa tes untuk menentukan validitas model dan variabel diperlukan. Uji stabilitas digunakan untuk mendeteksi stabilitas parameter dalam jangka pendek dan jangka panjang. Uji stabilitas yang dipakai adalah plot *Cumulative Sum of Square* (CUSUMQ). Jika garis

biru pada grafik CUSUMQ tidak keluar dari batas garis merah, artinya model tersebut stabil.

3.3.3.7 Pengujian Hipotesis

Pengujian hipotesis merupakan tahapan penting dalam penelitian kuantitatif yang bertujuan untuk menguji kebenaran dugaan awal terkait pengaruh variabel independen terhadap variabel dependen. Dalam penelitian ini, pengujian hipotesis dilakukan untuk mengetahui apakah variabel-variabel independen yang digunakan dalam model regresi ARDL memiliki pengaruh secara parsial (individual) terhadap variabel dependen. Pengujian secara parsial ini menggunakan uji t. Uji t bertujuan untuk melihat apakah variabel independen secara parsial berpengaruh signifikan pada variabel dependen. Kriteria pengujian *t-statistic* menggunakan tingkat signifikansi 0,05 atau 5%. Hipotesis berdasarkan uji f adalah sebagai berikut:

- a) t-hitung > t-tabel atau p-value < 0,05, maka H₀ ditolak atau variabel independen berpengaruh signifikan secara parsial terhadap variabel dependen.
- b) t-hitung ≤ t-tabel atau p-value ≥ 0,05, maka H₀ tidak ditolak atau variabel independen tidak berpengaruh signifikan secara parsial terhadap variabel dependen.

Selain melalui *t-statistic*, dapat pula dilihat dari P-valuenya. Jika nilai probabilitas berada di bawah 5%, maka variabel independen memiliki pengaruh terhadap variabel dependen. Sebaliknya, apabila nilai probabilitas melebihi 5%, maka variabel independen tidak memberikan pengaruh yang signifikan terhadap variabel dependen.