Fahmi Arif Fajar, - and Mumu Komaro, - and Hanissa Okitasari, - (2025) SIMULASI PERAMALAN PERMINTAAN DENGAN REGRESI LINEAR, ARIMA, DAN HOLT-WINTERS PADA INDUSTRI KEMASAN FLEKSIBEL. S1 thesis, Universitas Pendidikan Indonesia.
Abstract
Industri kemasan fleksibel mengalami pertumbuhan pesat secara global yang didorong oleh perubahan pola konsumsi, urbanisasi, dan keunggulan biaya yang kompetitif. PT. XYZ, sebagai perusahaan multinasional di sektor ini, menghadapi tantangan signifikan berupa kesalahan dalam peramalan permintaan dengan nilai eror 27,4% pada periode 2023–2024, yang memicu kerugian akibat overstock bahan baku. Penelitian ini bertujuan untuk simulasi peramalan permintaan produk kemasan fleksibel pada PT. XYZ. Penelitian ini menggunakan tiga pendekatan statistik yaitu Regresi Linear, Autoregressive Integrated Moving Average (ARIMA), dan Holt-Winters model Additive dan Multiplicative dengan pemrograman R melalui perangkat lunak RStudio untuk melakukan pemodelan, simulasi, dan validasi, termasuk uji diagnostik residual dan pengukuran kesalahan dengan MAPE dan U-Theil. Hasil dari penelitian ini berupa perbandingan tingkat akurasi ketiga metode tersebut dan menentukan metode terpilih dengan nilai eror terkecil. Metode Holt-Winters Additive merupakan metode dengan performa terbaik dengan nilai MAPE terkecil yaitu 13,28% sehingga meningkatkan akurasi peramalan permintaan pada PT. XYZ secara signifikan. Peningkatan akurasi peramalan disebabkan oleh penerapan metode statistik berbasis data historis dan pemilihan model yang sesuai dengan karakteristik data. The flexible packaging industry is experiencing rapid growth globally driven by changing consumption patterns, urbanization, and competitive cost advantages. PT. XYZ, as a multinational company in this sector, faces significant challenges in the form of errors in demand forecasting with an error value of 27,4% in the 2023–2024 period, which triggers losses due to overstocking of raw materials. This study aims to simulate demand forecasting for flexible packaging products at PT. XYZ. This study uses three statistical approaches, namely Linear Regression, Autoregressive Integrated Moving Average (ARIMA), and Holt-Winters Additive and Multiplicative models with R programming through RStudio software to perform modelling, simulation, and validation, including residual diagnostic tests and error measurements with MAPE and U-Theil. The results of this study are a comparison of the accuracy levels of the three methods and determine the selected method with the smallest error value. The Holt-Winters Additive method is the method with the best performance with the smallest MAPE value of 13.28%, thus significantly increasing the accuracy of demand forecasting at PT. XYZ. The increase in forecasting accuracy is due to the application of statistical methods based on historical data and the selection of models that suit the characteristics of the data.
|
Text
S_TL_2101911_Title.pdf Download (830kB) |
|
|
Text
S_TL_2101911_Chapter1.pdf Download (421kB) |
|
|
Text
S_TL_2101911_Chapter2.pdf Restricted to Staf Perpustakaan Download (1MB) |
|
|
Text
S_TL_2101911_Chapter3.pdf Download (415kB) |
|
|
Text
S_TL_2101911_Chapter4.pdf Restricted to Staf Perpustakaan Download (1MB) |
|
|
Text
S_TL_2101911_Chapter5.pdf Download (277kB) |
|
|
Text
S_TL_2101911_Appendix.pdf Restricted to Staf Perpustakaan Download (3MB) |
| Item Type: | Thesis (S1) |
|---|---|
| Additional Information: | https://scholar.google.com/citations?view_op=list_works&hl=en&user=SQ2wzjIAAAAJ ID SINTA Dosen Pembimbing Mumu Komaro: 5993878 Hanissa Okitasari: 6753821 |
| Uncontrolled Keywords: | ARIMA, Holt-Winters Additive, Kemasan Fleksibel, MAPE, Peramalan Permintaan ARIMA, Demand Forecasting, Flexible Packaging, Holt-Winters Additive, MAPE |
| Subjects: | T Technology > T Technology (General) T Technology > TS Manufactures |
| Divisions: | Fakultas Pendidikan Teknik dan Industri > Teknik Logistik - S1 |
| Depositing User: | Fahmi Arif Fajar |
| Date Deposited: | 22 Sep 2025 04:31 |
| Last Modified: | 23 Sep 2025 10:05 |
| URI: | http://repository.upi.edu/id/eprint/140040 |
Actions (login required)
![]() |
View Item |
