BAB III

METODOLOGI PENELITIAN

3.1 Metode Penelitian

Penelitian ini menggunakan pendekatan kuantitatif, guna mendapatkan informasi faktual dan menjawab hipotesis secara spesifik. Data yang diperoleh dianalisis secara cermat melalui perhitungan statistik. Adapun metode yang digunakan adalah eksperimen, yaitu suatu metode yang bertujuan untuk mengukur pengaruh atau efektivitas suatu perlakuan terhadap variabel lain dalam kondisi yang terkontrol (Sugiyono, 2022, hlm. 110). Creswell (2012) dalam Sugiyono (2022), hlm. 111) menjelaskan bahwa metode eksperimen dilakukan melalui percobaan untuk mengamati dampak perlakuan terhadap hasil dalam kondisi yang terkendali. Peneliti memilih metode eksperimen untuk mengevaluasi sejauh mana efektivitas pendekatan *Realistic Mathematics Education* dalam meningkatkan pemahaman konsep nilai tempat pada bilangan cacah di kelas V SD.

3.2 Desain Penelitian

Desain penelitian menggunakan *pre-experimental design* yang merupakan desain penelitian yang melibatkan satu kelompok subjek tanpa membandingkan dengan kelompok lain sebagai kontrol, sehingga belum sepenuhnya memenuhi standar eksperimen yang ketat. Desain ini sering digunakan untuk memperoleh gambaran awal mengenai pengaruh suatu perlakuan sebelum dilakukan penelitian yang lebih mendalam (Sugiyono, 2019). Dalam penelitian *pre-experimental*, subjek penelitian hanya mendapatkan perlakuan atau intervensi tanpa adanya perbandingan dengan kelompok yang tidak mendapat perlakuan tersebut. Hal ini membuat desain penelitian ini lebih sederhana, tetapi juga memiliki keterbatasam dalam mengukur efek sebab-akibat secara jelas.

Berdasarkan pemaparan dari latar belakang dan tujuan dari kajian ini, maka digunakan desain penelitian *pre-experimental design* dengan *one group pretest-postest* (satu kelompok tes awal – tes akhir) *design* dengan paradigma sebagai berikut (Sugiyono, 2013).

34

O1 X O2

Keterangan:

O1 : nilai *pre-test* (sebelum diberi perlakuan)

O2 : nilai *post-test* (setelah diberi perlakuan dengan soal yang sama)

x : perlakuan

Pada jenis penelitian ini, diberikan *pretest* terlebih dahulu kepada kelompok kelas yang akan diberikan perlakuan. Perlakuan yang digunakan oleh peneliti adalah pembelajaran penunjang ataupun praktik pendekatan *realistic mathematics education*. Setelah selesai diberikan perlakuan, kelas tersebut diberikan *posttest* untuk mengetahui efektivitas pendekatan *realistic mathematics education*.

3.3 Prosedur Penelitian

Terdapat 3 prosedur utama dalam penelitian ini untuk menganalisis efektivitas pendekatan *realistic mathematics education* terhadap peningkatn pemahaman konsep nilai tempat bilangan cacah di kelas V SD, yang meliputi thap persiapan, tahap pelaksanaan dan tahap akhir sebagai berikut:

- 1. Tahap Persiapan:
- a) Studi pendahuluan
 - i. Wawancara kepada guru sekolah dasar mengenai hambatan yang dilalui oleh peserta didik kelas V sekolah dasar.
 - ii. Menyelenggarakan peninjauan pustaka tentang teori yang relevan mengenai pendekatan pembelajaran yang sesuai dengan peserta didik.
 - iii. Analisis terhadap kurikulum dan capaian materi peserta didik kelas V guna mengkaji capaian pembelajaran, tujuan pembelajaran dan alur tujuan pembelajaran.
- b) Memilih sekolah yang ada di daerah Kab. Bandung Barat dan sekitarnya.
- c) Berkoordinasi dengan pihak sekolah dan wali kelas untuk membahas waktu pelaksanaan penelitian, serta menentukan populasi dan sampel yang akan dijadikan subjek penelitian.
- d) Menyusun perangkat pembelajaran dalam bentuk Modul Ajar

35

- e) Menyusun instrumen penelitian berupa tes pretest dan posttest untuk mengukur tingkat pemahaman materi nilai tempat bilangan cacah peserta didik kelas V sekolah dasar.
- f) Menjudgement instrumen pnelitian kepada dosen ahli.
- g) Melakukan uji coba instrumen tes.
- h) Melakukan analisis terhadap hasil pengujian instrumen penelitian untuk mengevaluasi validitas dan reabilitas soal sebagai alat ukur dalam penelitian.
- 2. Tahap Pelaksanaan
- a) Pemberian tes awal (*pretest*) untuk mengukur pemahaman konsep materi nilai tempat bilangan cacah peserta didik sebelum diberi perlakuan (*treatment*).
- b) Memberikan perlakuan dengan cara menerapkan pendekatan *realistic mathematics education* dalam proses pembelajaran.
- c) Memberikan tes akhir (*postest*) untuk menelaah tingkat pemahaman konsep nilai tempat bilangan cacah setelah diberi perlakuan (*treatment*).
- 3. Tahap Akhir
- a) Pengolahan data hasil pretesst dan postest.
- b) Mengkaji data hasil riset dan mendiskusikan hasil temuan penelitian.
- c) Merangkum hasil pengolahan data.
- d) Memberikan rekomendasi berlandaskan hasil penelitian.

3.4 Populasi Dan Sampel Penelitian

3.4.1 Populasi

Populasi penelitian mengacu pada keseluruhan elemen yang menjadi area generalisasi. Elemen populasi mencakup semua objek yang akan diukur dan menjadi unit yang diteliti (Sugiyono, 2022, hlm.126). Pada kajian ini melibatkan salah satu institusi pendidikan dasar di wilayah Kabupaten Bandung Barat (SDN Giriasih) tahun ajaran 2024/2025. Pemilihan SDN Giriasih sebagai populasi penelitian didasarkan pada pertimbangan bahwa sekolah tersebut menjadi lokasi penelitian utama serta peneliti memiliki pengalaman sebelumnya melalui program Kampus Mengajar sehingga lebih memahami kondisi pembelajaran dan karakteristik peserta didiknya.

3.4.2 Sampel Penelitian

Sampel penelitian merujuk pada sebagian elemen dari populasi yang memiliki karakteristik tertentu (Sugiyono, 2022, hlm. 127). Penelitian ini menggunakan teknik *total sampling* karena jumlah populasi yang sedikit yaitu 28 peserta didik dengan 1 rombongan belajar. *Total sampling* adalah metode pemilihan sampel yang memberi peluang sama kepada anggota populasi untuk dipilih menjadi sampel (Sugiyono, dalam Mustika et al, 2018). Kriteria yang digunakan adalah memilih sampel dari peserta didik kelas V sekolah dasar yang memiliki karakteristik serupa yaitu yang belum memiliki pemahaman konsep yang baik.

3.5 Teknik Pengumpulan Data

Salah satu langkah yang penting dalam penelitian adalah teknik pengumpulan data, karena tujuan utama penelitian adalah memperoleh data yang valid dan faktual. Tes menjadi teknik pengumpulan data dalam kajian ini. Tes berisi serangkaian pertanyaan atau tugas yang harus dijawab atau dikerjakan oleh peserta didik yang digunakan untuk menilai hasil belajarnya dan studi dokumentasi. Proses pembelajaran dilakukan dalam tiga rangkaian pertemuan, dengan perincian berikut:

1) pertemuan pertama, pelaksaan *pre-test* dan perlakuan 2) pertemuan kedua pemberian perlakuan, dan 3) pertemuan ketiga pemberian perlakuan serta pelaksanaan *post-test*. Untuk perinciannya sebagai berikut:

a. Tes

Soal tes dalam penelitian ini meliputi soal *pre-test* dan *post-test* dengan jenis tes tertulis sebanyak 12 soal isian yang bertujuan untuk mengukur pemahaman peserta didik. Soal *pre-test* dan *post-test* akan diberikan kepada peserta didik dalam waktu yang berbeda, diantaranya:

1. *Pre-test* (tes awal), Peneliti bertindak sebagai guru sebelum pembelajaran dimulai. Tujuan dari *pre-test* yaitu untuk mengukur kemampuan awal peserta didik sebelum proses pembelajaran berlangsung. Dalam penelitian ini, peneliti mengukur kemampuan peserta didik dalam memahami konsep tentang nilai tempat bilangan cacah di kelas V SD.

37

2. Post-test (tes akhir), Peneliti bertindak sebagai guru yang memberikan tes

akhir (post-test) kepada peserta didik kelas V setelah peserta didik diberikan

perlakuan atau setelah proses pembelajran menggunakan pendekatan

realistic mathematics education selesai. Lembar post-test ini sebagai

penindak lanjutan dri pre-test yang dilakukan sebelumnya (tahap awal),

diharapkan adanya peningkatan pemahaman konsep peserta didik dalam

materi nilai tempat bilangan cacah.

b. Perlakuan (treatment)

Peneliti memberikan perlakuan (treatment) kepada subjek penelitian yaitu

peserta didik kelas V SD. Dalam kajian ini, peserta didik berpartisipasi

dalam pembelajaran berbasis pendekatan realistic mathematics education

guna mengoptimalkan kecakapan pemahaman konsep tentang nilai tempat

bilangan cacah.

c. Dokumentasi

Pengumpulan data lanjutan dengan menggunakan dokumentasi untuk

mengamati atau mencatat laporan yang telah tersedia. Dalam penelitian ini,

dokumentasi dilakukan dengan pengambilan foto selama proses

pembelajaran dan pengumpulan hasil tes yang telah diberikan.

3.6 Instrumen Penelitian

Instrumen atau alat ukur sangatlah penting dalam sebuah riset (Sugiyono,

2022). Instrumen digunakan sebagai pengukur beragam fenomena alam sekaligus

sosial dalam riset. Fenomena yang hendak diukur dan ditelaah dalam penelitian

disebut variabel. Instrumen dalam kajian ini adalah tes hasil belajar (achievement

test), yang berfungsi untuk mengukur efektivitas pnerapan pndekatan Realistic

Mathematics Education untuk mengoptimalkan pemahaman konsep nilai tempat

bilangan cacah. Tes ini memuat 12 soal uraian dengan perolehan nilai maksimal

100.

Proses analisis dilakukan dengan mengevaluasi respons peserta didik

berdasarkan rubrik penilaian yang menggunakan rentang skor 0-3.

Diendha Novia Destrianeu, 2025

EFEKTIVITAS PENDEKATAN REALISTIC MATHEMATICS EDUCATION (RME)

UNTUK MENINGKATKAN PEMAHAMAN KONSEP NILAI TEMPAT BILANGAN CACAH DI KELAS V

SEKOLAH DASAF

a) Penghitungan Nilai Tes

$$Skor = \frac{Skor\ yang\ diperoleh}{Skor\ maksimal}\ x\ 100$$

b) Kategori Nilai Tes

Nilai tes yang berupa *pre-test* dan *post-test* dikategorikan. Depdiknas (dalam Basam, 2022) membagi nilai ke dalam sejumlah tingkatan tertentu. Berikut tabel kategori nilai peserta didik:

No Interval Kategori 86 - 100Sangar Baik 1. 2. 71 - 85Baik 56 - 70Cukup 3. 4. 41 - 55Kurang 5. < 40 Sangat Kurang

Tabel 3. 1 Kategori Nilai Tes

c) Kriteria Ketercapaian Tujuan Pembelajaran (KKTP)

Kriteria ketercapaian pembelajaran peserta didik disusun dan ditetapkan oleh sekolah. Kemudian, dikategorikan ke dalam tingkatan nilai tertentu. Berikut tabel KKTP peserta didik:

 No
 Interval
 Kategori

 1.
 90 – 100
 Sangar Baik

 2.
 79 – 89
 Baik

 3.
 68 – 78
 Cukup

 4.
 0 - 68
 Perlu bimbingan

Tabel 3. 2 Interval KKTP

3.6.1 Kisi-kisi Instrumen Penelitian

Kisi-kisi tes dibuat berdasarkan kurikulum merdeka fase C pada elemen bilangan dan materi nilai tempat. Kisi-kisii soal *pre-test* dan *post-test* terlampir dalam lampiran 1.

3.7 Uji Coba Instrumen Penelitian

Sebelum pemberian instrumen tes, peneliti melakukan uji validitas dan reabilitas terhadap soal-soal yang akan digunakan dalam penelitian.

a. Uji Validitas

Menurut American Educational Research Association (1999 dalam Gall, et al., 2014, hlm. 107), tes yang baik adalah tes yang menghasilkan skor andal dan memungkinkan interpretasi dengan validitas dan kuat. Validitas dapat diartikan sebagai kesesuaian antar data yang diperoleh dengan data yang menjadi objek penelitian (Waruwu, 2023, hlm.2904). Pengujian validitas bertujuan untuk memastikan bahwa alat ukut yang dikembangkan memiliki tingkat keabsahan yang memadai. Sugiyono (2019, hlm. 176) menyatakan bahwa instrumen valid berarti instrumen yang sanggup menakar yang seharusnya ditakar. Untuk menghitung validitas instrumen tes ini, peneliti menggunakan rumus korelasi product moment dari Pearson sebagai berikut:

$$r_{xy} = \frac{n \sum XY - (\sum X)(\sum Y)}{\sqrt{(n \sum X^2 - (\sum X)^2)(n \sum Y^2 - (\sum Y)^2)}}$$

Keterangan:

r_{xy} : Koefisien validitas item yang dicari

X : Skor yang diperoleh subjek dari seluruh item

Y : Skor total

n : Jumlah responden

 $\sum X$: Jumlah hasil pengamatan variabel X

 $\sum Y$: Jumlah pengamatan variabel Y

 $\sum XY$: Jumlah hasil pengamatan variabel X dan variabel Y

 $\sum X^2$: Jumlah Kuadrat pada masing-masing skor X

 $\sum Y^2$: Jumlah kuadrat pada masing-masing skor Y

Keputusan uji validitas:

- a) Apabila nilai r hitung > r table, maka instrumen atau item soal berkorelasi signifikan dengan skor total (dinyatakan valid).
- b) Apabila r hitung < r table, maka instrumen atau item soal tidak berkorelasi signifikan dengan skor total (dinyatakan tidak valid).

Sugiyono (2022), suatu item instrumen dapat dikatakan valid apabila memiliki indeks validitas bernilai positif dan minimal lebih dari 0,3. Dengan demikian, butir yang memiliki korelasi di bawah angka tersebut dianggap tidak valid dan perlu diperbaiki.

Uji coba instrumen tes dilakukan pada 30 peserta didik kelas VI SDN Giriasih Batujajar. Peserta uji coba berada di jenjang yang berbeda dengan sampel penelitian. Data hasil uji coba dianalisis menggunakan SPSS versi 29 untuk menguji validitas instrumen.

Hasil uji validitas instrumen tes sebagai sarana penngukuran kemampuan memahami konsep nilai tempat bilangan cacah di kelas V, menggunakan SPSS versi 29 menghasilkan *output* dan diketahui bahwa buti soal yang memenuhi kriteria adalah nomor 1, 6, 7, 9, 10, 11, 12, 13, 15, 16, 17, dan 18 yang terlampir pada Tabel 3.3:

Tabel 3. 3 Hasil Uji Validitas Instrumen Tes KemampuanPemahaman Konsep Nilai Tempat Bilangan Cacah

Pearson	Nilai Sig. Kesimpulan		Interpretasi	
Corelation				
0.561	0.001	VALID	CUKUP	
0.162	0.393	TIDAK VALID	TIDAK	
			VALID	
0.282	0.132	TIDAK VALID	TIDAK	
			VALID	
-0.170	0.369	TIDAK VALID	TIDAK	
			VALID	
0.241	0.200	TIDAK VALID	TIDAK	
			VALID	
0.847	< 0.001	VALID	TINGGI	
0.837	< 0.001	VALID	TINGGI	
0.176	0.353	TIDAK VALID	TIDAK	
			VALID	
0.429	0.018	VALID	RENDAH	
0.396	0.030	VALID	CUKUP	
0.595	< 0.001	VALID	TINGGI	
0.623	< 0.001	VALID	SANGAT	
			TINGGI	
0.752	< 0.001	VALID	SANGAT	
			TINGGI	
	0.561 0.162 0.282 -0.170 0.241 0.847 0.837 0.176 0.429 0.396 0.595 0.623	Corelation 0.561 0.001 0.162 0.393 0.282 0.132 -0.170 0.369 0.241 0.200 0.847 <0.001	Corelation 0.561 0.001 VALID 0.162 0.393 TIDAK VALID 0.282 0.132 TIDAK VALID -0.170 0.369 TIDAK VALID 0.241 0.200 TIDAK VALID 0.847 <0.001	

Soal 14	0.133	0.482	TIDAK VALID	TIDAK
_				VALID
Soal_15	0.397	0.030	VALID	CUKUP
Soal_16	0.651	< 0.001	VALID	SANGAT
				TINGGI
Soal_17	0.824	< 0.001	VALID	SANGAT
				TINGGI
Soal_18	0.682	< 0.001	VALID	SANGAT
				TINGGI
Soal_19	0.347	0.060	TIDAK VALID	TIDAK
				VALID
Soal_20	0.139	0.464	TIDAK VALID	TIDAK
				VALID

Mengacu pada tabel 3.3 dari 20 item soal yang diujikan, sebanyak 12 soal memiliki nilai koefisien korelasi (korelasi item) melebihi nilai r_{tabel} sebesar 0,361. Dengan demikian, dapat dipeoleh bahwa 12 butir soal ditanyatakan valid karena memenuhi kriteria korelasi item > r_{tabel} dan nilai signifikansi <0,05. Beikut merupakan hasil uji validitas yang diolah menggunakan perangkat lunak SPSS Statistic versi 29.

Tabel 3. 4 Hasil Uji Validitas

		Seals	99962	36M_3	Sealif	SHALS	9em_6	SeaL7	231L0	908_9	Son_10	918_11	Sest_12	SeaL13	918614	9exL15	Sem_16	918L17	201119	Sem_19	95WL20	Total
STATE	PARKET COTHUME		.400	.776	-149	.362	.206	-227	070	.236	060	.467	.014	.400	.376	.502	363	.391	.209	016	.234	.501
	31g (2-1314-0)		925	< 1017	400	030	10.634	267		24.8	817	407	341.2	.02%	040	001	99.7	EDIN	27.8	JC294	214	001
	14	30	39	36	30	39	36	70	39	38	70	30	31	20	30	33	20	30	33	30	30	30
0 ewt_2	Dearmen Gerrelation	.400		.336	+.113	017	031	.010	.079	056	+,314	-129	-116	.309	.301	.000	+.109	.690	1.017	+.129	.971	.10
	Sig. (2-18140)	.025		.075	.451	.929	.072	.622	.077	.730	.092	.463	.513	.024	.100	1.003	.560	.635	.001	.497	.200	.393
	74	×o	303	360	XO	303	360	NO.	303	366	210	363	360	383	303	369	383	340	300	331	340	- 30
Soul 3	Personen Correlation	779	.339		155	.154	.090	.070	.031	022	306	029	.026	.229	.412	.000	.151	.000	.007	221	.234	.202
	51e. (2-lates)	+.001	.075		.414	417	.600	.477	.071	.006	.100	.000	.093	.223	.024	.002	.425	.044	.049	.240	.214	.132
	74	30	303	36	20	30	36	20	30	36	20	30	34	240	30	33	36	30	33	36	30	313
Knal ä	Program Correlation	149	111	144		044	186	218	200	1166	216	707	178	312	105	188	311	140	141	129	247	128
	5(g. (2-telled)	422	.551	.414		.010	.340	.259	290	.301	.210	272	.359	.092	.501	222	.956	.460	455	.516	.109	.259
	**	363	201		363	203		250	363		210	163		250	163	20	210	160	20	711	340	30
Sout 5	Poursen Correlation	.502	.017	.114		,	.994	.120	.093	.293	.860	.215	.028	.010	.225	.523**	.910	.140	.073	.247	.675	.241
	Sie. (2-lailes)	.037	.929	.417	.010		.655	.493	.624	.292	1.860	.254	.917	.775	.233	.003	.635	.462	.702	.180	.692	.203
	N	- 20	20	36	20	20	26	20	20	20	20	20	20	30	20	20	20	20	23	20	30	20
MILTON M	Mooreen Correspon	3000	933	1113	190	DMA	,	3078°	228	1.00K	387WI	0.995	1418	73.7	113	363.6	HTO.	85.0	MIT	210	8777	X4.7
	Mag 19 hadrag	10 (10)	800	****	3.40	155/4		~ 861	8.64	< 0.00	0.77	~ 663	001	~ 001	863	0716	~ 981	N 6000	60%	244	107	~ 603
	14	30	30	36	30	30	36	30	30	30	10	30	30	10	30	33	10	30	23	30	30	22
MENTAL C	Meanson Correlation	-2317	911	11734	- 21×	530	. NOW		144	26496	306	4 850	16/17	7696	864	2386	690	7016	. Surre	290	- 640	3547
	316 E1-131410	797	9074	1177	7100	4104	< 1015		4.04	1997	111.00	605	< 0.01	< 1007	100	47.0	< 997	r 8000	< 003	170	FORK	< 001
	14	30	39	36	30	39	36	20	20	30	70	20	39	30	20	33	30	20	33	30	70	33
30MF0	Pearson Correlation	.070	.079	.031	300	.093	.112	.149	- 1	.297	120	.240	.139	.150	.126	.097	263	.611	009	031	320	.176
	Stg. (2-19144)	712	627	.971	.290	624	.551	433		.000	516	195	.462	.260	509	609	.264	\$66	963	.919	.095	253
	74	20	203	260	20	203	260	210	203	76.0	210	202	761	282	262	20	282	363	22	391	740	712
0.001.0	Demokri Correlation	.220	066	011	100	.200	.500	.330	.317		052	.467	.113	.415	.122	.425	.171	.165	.035	120	.017	.420
	51g. (2-tailed)	.243	.730	.900	.301	.202	+.001	.067	.030		.763	.025	.553	.023	.522	.019	.366	.390	.055	.494	.764	.019
	N	263	303	360	310	303	360	210	363	366	210	363	300	283	363	300	283	340	30	293	340	369
Sout 10	Poursen Correlation	.005	314	.306	.226	.000	326	.336	120	.092		202	333	.166	.931	156	.333	444	424	.213	.019	.356
	Ste. (2-latter)	.662	.092	.100	.230	1.000	.076	.000	.026	.793		.205	.073	.310	.074	.418	.972	.014	.029	.210	.010	.033
	14	30	20	36	30	20	36	10	30	36	10	30	30	10	30	33	30	30	33	30	30	33
Kiral_11	Progress Correlation		1 304	H796	707		MK.	4 111	744	40/	262		X4./	4X/	15%	588	3004	P/805**	M02**	1494	172	AUT .
	Miles 27 Austria	407	487	90876	717	754	< 991	REA	1.85	974	780		041	1110	400	7011	977	E100	001	31791	2917	< 001
	N	30	30	36	30	20	36	30	20	30	30	20	31	10	30	22	30	30	22	30	30	>>
REMESS	PARKET COTHURS	614	239	82%	-179	- 929	1414	647	1304	312	36301	2/47		490.	107		401	0.216	474	278	- 166	40.04
	20g (2.13000)	347	5436	HONE	3404	1857	1883	< 861	4104	hox	8.72	DEG		1966	874	617	18796	× 8001	00€	187	31.00	< 001
	14	30	39	36	30	39	36	70	30	30	10	30	31	30	30	33	30	30	33	30	20	33
309/145	Cearson Correlation	.406	.309	.236	1.312	.053	.74.2	709	.199	413	.160	.437	.195	- 1	.190	.209	.369	.536	-207	.916	619	.752
	SIG. (2-18140)	.026	.034	.232	.493	.275	<.001	<.001 □.001	200	.033	.310	.016	.001		.299	.199	.097	.602	.062	.769	.930	- 001
	N	20	201	260	20	203	200	240	203	260	310	203	2611	310	20	200	383	340	20	391	740	203
Spul_14	Dearsen Correlation	,374	.301	412	105	225	.112	.054	.125	.122	331	-129	:197	.156	- 1	:134	.015	100	-125	101	.023	.133
	Sig. (2-lailes)	.040	.106	.024	.001	.200	.021	.770	.000	.522	.074	.400	.074	.260		.479	.930	.000	.503	.339	.600	.402
	74	363	361	346	363	363	346	310	363	346	310	363	360	363	363	368	343	363	34.0	311	340	343
Soul 15	Poursen Gertelellen	555	.000	.099	.183	.525	.598	.126	.097	.425	.154	.163	.124	.266	.134		.166	.270	.114	.230	.000	.397
	Ste. (2-in/lee)	.001	1,000	.602	.222	.003	.090	.473	.600	.019	.416	.200	.512	.155	.470		.570	.150	547	.222	1.000	.033
	Process Control for	30	30	36	30	20	26	20	30	36	30	30	405	36	30	39	26	30	23	36	30	23
NILL TH																						
	Sing (2 larlers)	667	5.69	474	255	635	< 891	5.861	284	3066	812	637	028	.057	535	AZE		5.001	003	414	415	5.001
	14	20	20	36	30	20	26	30	20	30	10	20	20	10	20	23	36	20	23	30	20	22
HEALT L	PROGRED COTTOGRAP	#941	0.003	1003	- 140	248	610	704	051	311.6		5.807	14.0%	E-30%	- 5 004	77.8	HEY		1015	16967	- 1904	3655
	MG (2-Takes)	6006	8304	1111	460	6107	< 1007	< 861	365.69	2010	111.4	607	< 003	1867	1.60	1148	< 000		< 001	3333	887	< 601
	74	30	30	36	30	39	36	70	30	30	10	30	474	30	30	39	521	30	33	30	30	33
near'ze	Pearson Correlation	.256	047	.097	141	073	.562"	576"	009	.005	.424	592"		.357	-126	.116		.905"	- 1	395	149	.692"
	SEE (2/88144)	.173	.001	.019	.456	792	360	v.661	963	.856	.010	.001	.001	.060	.000	.047	.010	r. 661		.026	.436	≠ 601
	4		100	746		707	166		767	140	340	. 50	140	941	90	141	141	140	14.6	141	760	14.9
0001.19	Pearson Correlation	005	129	221	123	.247	.214	.290	031	130	.213	.160	.270	.016	101	.233	.142	.397	.106	- 1	.077	.247
	Stg. (2-1914-c)	729	.497	.246	.516	.100	.256	.120	.059	.494	.259	275	.137	.769	.339	222	.454	.630	.035		.605	.059
	**	360	301	100	360	201	100	940	203	141	240	203	***	940	160	14.0	200	160	200	***	340	24.9
Sout 10	Poursen Correlation	234	.171	.234	.247	.075	.022	.640	- 329	.057	810	-172	168	010	.623	.009	.114	.603	-149	.977		.159
	Sig. (2-18140)	.214	.266	.214	.169	.692	.907	.422	.005	.764	.919	.263	.376	.920	.900	1.003	.415	.662	435	.585		461
	N	90	303	360	30	303	360	037	303	360	210	303	30	383	30	20	383	30	30	381	340	30
Tubul	Deserter Correlation	551	.152	.202	170	.241	.047		.175	429	.395	535	.623	752	.123	.397	.451	.024	.502	.347	.120	1
	51g. (2-1814x)	.001	.393	.132	.360	.200	+.001	+.001	.353	.010	.010	+.001	+.001	*.001	.402	.033	+.001	+.601	+.001	.910	.404	

b. Uji Reabilitas

Uji reabilitas instrumen dimaksudkan untuk menguji keajegan dan konsistensi data yang disajikan. Reabilitas mengacu pada kadar hasil pengukuran yang ajeg, dapat diandalkan, konsisten, dan bebas dari kesalahan pengukuran (*measurement error*) (Kusumastuti et al., 2020, hlm. 88). Dalam penelitian ini reabilitas instrumen diukur menggunakan rumus *Cronbach's Alpha* dengan formula sebagai berikut:

$$r_{11} = \left[\frac{k}{(k-1)}\right] \left[1 - \frac{\sum \sigma_b^2}{\sigma_t^2}\right]$$

Keterangan:

 r_{11} : Koefisien reabilitas instrument (total tes)

k : Jumlah butir soal pertanyaan yang sah

 $\sum \sigma_h^2$: Jumlah varian butir

 σ_t^2 : Varian skor total

Pengambilan keputusan instrumen menggunakan kategori koefisien reabilitas menurut Guildford (dalam Sugiyono, 2013) yang disajikan dalam Tabel 3.5.

Tabel 3. 5 Kategori Koefisien Reabilitas Instrumen

Interval Koefisien Reabilitas	Interpretasi Reabilitas			
$0.80 \le r11 < 1.00$	Reabilitas sangat tinggi			
$0.60 \le r11 < 0.80$	Reabilitas tinggi			
$0.40 \le r \ 11 < 0.60$	Reabilitas sedang			
$0.20 \le r11 < 0.40$	Reabilitas rendah			
r11 < 0,20	Reabilitas sangat rendah (tidak			
	reabilitas)			

Berikut dilampirkan hasil uji reabilitas instrumen tes pada gambar 3.1

Reliability Statistics

Cronbach's	
Alpha	N of Items
.729	20

Gambar 3. 1 Hasil Uji Reabilitas Instrumen Tes

Berdasarkan hasil penghitungan melalui SPSS versi 29, yang menghasilkan *output* dengan nilai koefisien *Cronbach's Alpha* yaitu sebesar 0,729. Nilai ini menunjukkan bahwa instrumen memiliki tingkat konsistensi internal yang cukup baik dan memenuhi kriteria reabilitas. Oleh karena itu, instrumen dinyatakan layak untuk digunakan dalam penelitian, mengingat nilai koeisien tersebut telah melampaui batas minimal reabilitas sebesar 0,600. Instrumen yang dianalisis terdiri atas 20 butir soal. Temuan hasil uji reabilitas secara menyeluruh disertakan pada lampiran.

3.8 Teknik Analisis Data Penelitian

3.8.1 Uji Normalitas

Pemakaian uji normalitas ditujukan guna menganalisis data yang berdistribusi normal atau mendekati distribusi normal (Muhammad, 2022). Sejalan dengan hal ini, Widana dan Muliani (2020) menyatakan bahwa uji normalitas merupakan salah satu prasyarat dalam analisis statistik. Dalam penelitian ini menggunakan *Shapiro-Wilk* karena data yang diambil oleh peneliti kurang dari 50.

Dalam pengujian normalitas menggunakan SPSS, pengambilan keputusan didasarkan pada nilai probabilitas dengan kriteria sebagai berikut (Widana & Muliani, 2020):

- 1) Data bedistribusi normal dapat diasumsikan apabila nilai (sig.) $> 0.05 = H_0$ diterima; H_a ditolak. Maka, data berdistribusi normal.
- 2) Data berdistribusi tidak normal apabila nilai (sig.) $< 0.05 = H_0$ ditolak; H_a diterima. Maka, data berdistribusi tidak normal.

3.8.2 Uji Homogenitas

Uji homogenitas bertujuan untuk menentukan apakah beberapa varian populasi memiliki kesamaan atau tidak (Usmadi, 2020). Uji ini adalah prasyarat yang digunakan guna menguji apakah beberapa kelompok data sampel mewakili satu populasi dengan varians yang sama. Dengan kata lain, uji homogenitas memastikan bahwa data yang akan dianalisis memiliki karakteristik yang serupa. Dalam SPSS, uji homogenitas dilakukan dengan menggunakan nilai probabilitas (signifikansi) dan kriteria pengambilan keputusan berikut (Widana & Muliani, 2020):

- 1) Apabila nilai sig. > 0.05, kedua kelompok data dianggap homogen = H_0 diterima; H_a ditolak. Maka, varians data antar kelompok adalah homogen.
- 2) Apabila nilai sig. < 0.05, kedua kelompok data dianggap tidak homogen = H_0 ditolak; H_a diterima. Maka, varians data berbeda secara signifikan (tidak homogen).

3.8.3 Uji Analisis Skor *N-Gain*

Uji analisis skor N-gain digunakan untuk mengukur seberapa efektif suatu perlakuan atau *treatment*. Pengujian ini dilakukan dengan menghitung selisih antara skor *pre-test* dan *post-test* (Rahmawati & Hidayati, 2022). Kajian ini menerapkan analisis N-Gain guna meninjau tingkat efektivitas pendekatan *realistic mathematics education*, khususnya pada materi nilai tempat di kalangan siswa kelas V atau fase c sekolah dasar. Efektivitas tersebut dievaluasi berdasarkan hasil *pretest* dan *posttest*. Skor gain dapat dihitung dengan menggunakan rumus berikut :

$$N - gain(g) = \frac{skor\ postest - skor\ pretest}{skor\ maksimal - skor\ pretest} \times 100$$

Keterangan:

N-gain = Besarnya faktor gain

Skor postest = Nilai hasil tes akhir

Skor pretest = Nilai hasil tes awal

Skor max = Nilai maksimal tes

Arikunto (dalam Husnah, 2023, hlm 5) indeks *N-Gain* diinterpretasikan dalam kriteria skor *N-gain* disajikan dalam tabel 3.6

Tabel 3. 6 Kriteria Skor N-Gain

Skor N-Gain (g)	Kriteria
g > 0.7	Tinggi
$0.3 \le g \le 0.7$	Sedang
g < 0.3	Rendah

3.8.4 Uji Perbedaan Rerata

Kajian ini menggunakan metode Paired Sample T-Test untuk menelaah perubahan antara hasil *pre-test* dan *post-test*. Paired Sample T-Test, yang juga dikenal sebagai Uji-T dua sampel berpasangan, merupakan uji statistik parametrik yang membandingkan dua rata-rata pada subjek yang sama (Soeprajogo & Ratnaningsih, 2020). Menurut Widiyanto (2013), Paired Sample T-Test digunakan untuk mengukur efektivitas perlakuan atau *treatment*, yang terlihat dari perubahan rata-rata sebelum dan sesudah perlakuan diterapkan. Dalam uji perbedaan rerata ini menggunakan bantuan *SPSS Statistics* versi 29, dengan tingkat signifikansi (α)

digunakan sebagai ambang batas untuk mengambil keputusan. Kriteria pengambilan keputusan adalah sebagai berikut:

- 1) Jika nilai signifikan > 0,05, maka Ho diterima dan Ha ditolak.
- 2) Jika nilai signifikan < 0,05, maka Ho ditolak dan Ha diterima.