Muhamad Aviv Arrafi, - and Diky Zakaria, - and Dewi Indriati Hadi Putri, - (2025) RANCANG BANGUN MESIN PENGISIAN OLI OTOMATIS BERBASIS INTERNET OF THINGS (IOT) DENGAN SISTEM MONITORING MENGGUNAKAN PLATFORM BLYNK. S1 thesis, Universitas Pendidikan Indonesia.
Abstract
Penelitian ini bertujuan untuk merancang dan membangun mesin pengisian oli otomatis berbasis Internet of Things (IoT) dengan sistem monitoring menggunakan platform Blynk. Latar belakang penelitian ini adalah masih digunakannya metode pengisian oli konvensional yang kurang efisien dan berpotensi menimbulkan kesalahan dalam volume pengisian. Metode penelitian menggunakan pendekatan Research and Development (R&D) dengan model ADDIE yang meliputi tahap analisis kebutuhan, perancangan, pengembangan prototipe, implementasi, dan evaluasi. Sistem yang dikembangkan mengintegrasikan Arduino Mega 2560, ESP32, flow sensor YF-S201, sensor ultrasonik HC-SR04, solenoid valve, pompa, LCD I2C, serta USB barcode scanner. Hasil pengujian menunjukkan bahwa rata-rata kesalahan pengisian (Mean Absolute Error/MAE) adalah 12,9 mL dari target 800 mL, dan rata-rata persentase kesalahan (Mean Absolute Percentage Error/MAPE) tercatat sebesar 1,49%, yang masih berada dalam batas toleransi ISO 4064-1:2014 untuk Zona Aliran Bawah (±3%), namun tidak memenuhi standar untuk Zona Aliran Atas (±1%). Waktu siklus rata-rata pengisian adalah 21,49 detik dengan rentang variasi 3,0 detik (antara 20,1 detik hingga 23,1 detik), yang menunjukkan adanya sedikit inkonsistensi durasi proses. Sistem monitoring berbasis IoT berhasil menampilkan data secara real time berupa ID barcode, volume, status, dan waktu pengisian pada platform Blynk, sekaligus mencatat data pengisian ke Google Spreadsheet secara otomatis. Kesimpulannya, sistem ini mampu meningkatkan akurasi, efisiensi waktu, dan efektivitas monitoring data pengisian oli, sehingga berpotensi untuk diterapkan pada industri. ----- This research aims to design and develop an automatic Oil Filling Machine based on the Internet of Things (IoT) with a monitoring system using the Blynk platform. The background of this study is the continued use of conventional filling methods, which are less efficient and prone to errors in filling accuracy. The research method applied is Research and Development (R&D) using the ADDIE model, which consists of needs analysis, design, prototype development, implementation, and evaluation stages. The developed system integrates Arduino Mega 2560, ESP32, YF-S201 flow sensor, HC-SR04 ultrasonic sensor, solenoid valve, pump, I2C LCD, and a USB barcode scanner. The experimental results show that the average filling error (Mean Absolute Error/MAE) is 12.9 mL from the target of 800 mL, and The average percentage error (Mean Absolute Percentage Error/MAPE) is 1.49%, which is still within the tolerance limits of ISO 4064-1:2014 for the Lower Flow Zone (±3%) but does not meet the standards for the Upper Flow Zone (±1%). The average filling cycle time is 21.49 seconds, with a variation range of 3.0 seconds (between 20 .1 and 23.1 seconds), indicating slight inconsistency in process duration. The IoT-based monitoring system successfully displays real-time data, including barcode ID, volume, status, and filling time on the Blynk IoT Platform, while automatically recording the data into Google Spreadsheet. In conclusion, this system improves accuracy, time efficiency, and monitoring effectiveness in the oil filling process, making it suitable for application in small to medium-scale industries.
|
Text
S_MKB_2107695_Title.pdf Download (494kB) |
|
|
Text
S_MKB_2107695_Chapter1.pdf Download (310kB) |
|
|
Text
S_MKB_2107695_Chapter2.pdf Restricted to Staf Perpustakaan Download (934kB) |
|
|
Text
S_MKB_2107695_Chapter3.pdf Download (699kB) |
|
|
Text
S_MKB_2107695_Chapter4.pdf Restricted to Staf Perpustakaan Download (1MB) |
|
|
Text
S_MKB_2107695_Chapter5.pdf Download (273kB) |
|
|
Text
S_MKB_2107695_Appendix.pdf Restricted to Staf Perpustakaan Download (1MB) |
| Item Type: | Thesis (S1) |
|---|---|
| Additional Information: | https://scholar.google.com/citations?hl=en&user=7RfYR2cAAAAJ ID SINTA Dosen Pembimbing Diky Zakaria: 6779007 Dewi Indriati Hadi Putri: 6720737 |
| Uncontrolled Keywords: | Internet of Things, mesin pengisian oli otomatis, Blynk, monitoring, akurasi, efisiensi Internet of Things, automatic Oil Filling Machine, Blynk, monitoring, accuracy, efficiency |
| Subjects: | T Technology > T Technology (General) |
| Divisions: | UPI Kampus Purwakarta > S1 Mekatronika dan Kecerdasan Buatan |
| Depositing User: | Muhamad Aviv Arrafi |
| Date Deposited: | 15 Sep 2025 08:40 |
| Last Modified: | 15 Sep 2025 08:41 |
| URI: | http://repository.upi.edu/id/eprint/139267 |
Actions (login required)
![]() |
View Item |
