BAB III

METODE PENELITIAN

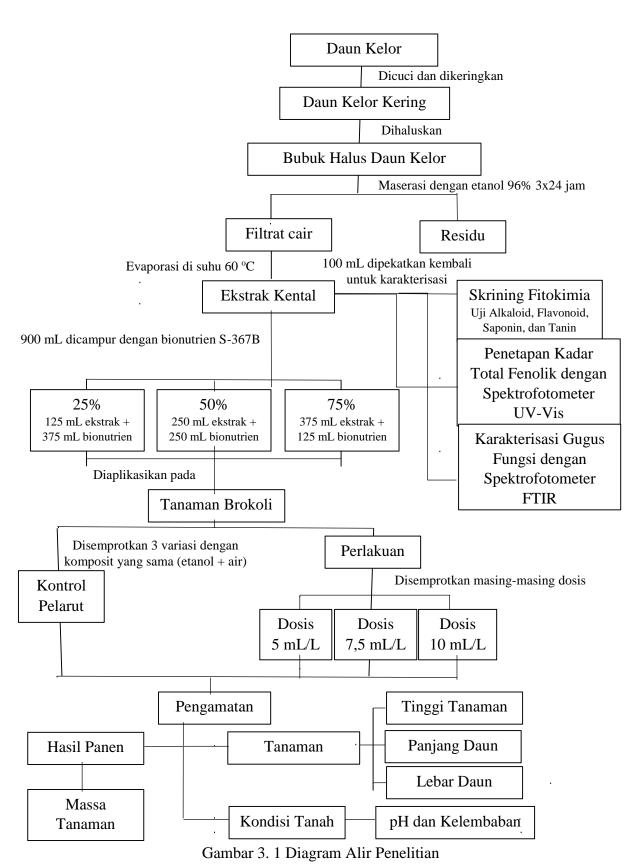
3.1 Waktu dan Lokasi Penelitian

Penelitian ini dilakukan pada rentang waktu Maret 2025 hingga Juli 2025. Penelitian ini terdiri dari tahap ekstraksi daun kelor, tahap aplikasi campuran ekstrak daun kelor dan bionutrien S-367B, tahap pengamatan pertumbuhan tanaman brokoli dan tahap karakterisasi ekstrak daun kelor. Tahapan ekstraksi dan karakterisasi daun kelor dilakukan di Laboratorium Riset Kimia FPMIPA UPI, sedangkan untuk aplikasi komposit ekstrak daun kelor dan bionutrien S-367B serta pengamatan pertumbuhan tanaman brokoli dilakukan di perkebunan yang berada di daerah Cigugur Girang, Kecamatan Parongpong, Kabupaten Bandung Barat.

3.2 Alat dan Bahan

3.2.1 Alat

Peralatan yang digunakan pada penelitian ini antara lain wadah plastik bertutup (5L), gelas kimia (100 mL, 600 mL, 1000 mL), gelas ukur (10 mL, 100 mL dan 1000 mL), labu ukur (10 mL, 100 mL, dan 500 mL), labu dasar bulat 500 mL, tabung reaksi, rak tabung reaksi, pipet volume 10 mL, pipet ukur, mikropipet, pipet tetes, corong kaca, botol timbang, batang pengaduk, spatula, botol semprot, neraca analitik, set alat *rotary evaporator*, pompa, blender, kertas saring, spatula, botol agro/plastik, alat semprot pestisida 2 L, *chiller*, pH meter, spektrofotometer UV-Vis dan Spektrofotometer Fourier-Transform Infrared (FTIR).


3.2.2 Bahan

Pada penelitian ini digunakan sampel daun kelor kelor segar (± 3 kg) yang berasal dari Kecamatan Lembang, Bandung Barat yang dikumpulkan pada bulan Maret 2025. Bahan kimia yang digunakan antara lain pelarut etanol teknis 96% dan aquades. Adapun reagen yang digunakan untuk Uji Total *Phenolic*

Compound meliputi larutan asam galat, Fenol Folin-Ciocalteu 10%, dan Natrium Karbonat (Na₂CO₃). Selain itu, pereaksi yang digunakan untuk uji fitokimia antara lain, pereaksi Dragendroff, ferri klorida (FeCl₂), serbuk magnesium (Mg), dan HCl pekat, serta bahan yang digunakan untuk pembuatan komposit adalah bionutrien S-367B dan air.

3.3 Bagan Alir dan Tahap Penelitian

Penelitian ini terbagi menjadi beberapa tahapan, yaitu ekstraksi daun kelor, karakterisasi ekstrak daun kelor, aplikasi campuran ekstrak daun kelor dan bionutrien S-367B, serta tahap pengamatan pertumbuhan tanaman brokoli. Tahap ekstraksi dilakukan dengan metode maserasi menggunakan pelarut etanol teknis dan penguapan dengan *rotary evaporator*. Tahap karakterisasi berupa uji fitokimia, uji fenolik menggunakan UV-Vis dan uji gugus fungsi menggunakan FTIR. Pada tahap aplikasi, divariasikan dosis campuran ekstrak daun kelor dan bionutrien S-367B yaitu kadar 25%, 50%, dan 75% dengan masing-masing kadar akan diaplikasikan pada dosis 5 mL, 7,5 mL, dan 10 mL yang kemudian diaplikasikan ke tanaman brokoli, serta pengaplikasian aquades dan etanol kepada tanaman kontrol pelarut. Pada tahap pengamatan dilakukan terhadap pertumbuhan tinggi tanaman, panjang daun, lebar daun, dan massa hasil panen serta kondisi lingkungan seperti pH dan kelembaban tanah seperti yang ditunjukkan pada Gambar 3.1

Syifa Aulia Rał APLIKASI KOMPOSIT BIOPESTISIDA EKSTRAK DAUN KELOR (MORINGA OLEIFERA. L) DENGAN BIONUTRIEN S-367B PADA TANAMAN BROKOLI (BRASSICA OLERACEA. L) Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

44

3.4 Tahapan Penelitian

Penelitian ini melalui tahapan antara lain, tahap ekstraksi dari daun kelor, tahap karakterisasi ekstrak daun kelor, tahap aplikasi komposit ekstrak daun kelor dan bionutrien S-367B, tahap pengamatan pertumbuhan tanaman brokoli.

3.4.1 Pembuatan Ekstrak Daun Kelor

Pada tahap ini, daun kelor segar, berwarna hijau dan utuh sebanyak 3.000 gram dicuci dan dikeringkan pada suhu ruang selama 14 hari. Ekstrak diperoleh dengan metode maserasi, dimana daun kelor yang telah menjadi serbuk halus direndam dalam pelarut etanol teknis 96% selama 3 x 24 jam. Dilakukan penyaringan pada ekstrak hasil maserasi, lalu filtrat dipekatkan menggunakan *rotary evaparator* pada suhu 60 °C hingga diperoleh 1000 mL ekstrak kental.

Selanjutnya, sebanyak 100 mL ekstrak kental daun kelor dipekatkan kembali menggunakan *rotary evaporator* untuk selanjutnya dilakukan karakterisasi berupa uji fitokimia, kadar total fenol menggunakan UV-Vis, dan analisis gugus fungsi menggunakan FTIR. Karakterisasi ini digunakan untuk menentukan golongan dari senyawa yang terdapat pada daun kelor dan diduga aktif berpotensi sebagai biopestisida. Kemudian, sebanyak 900 mL ekstrak kental daun kelor digunakan untuk membuat komposit biopestisida dan bionutrien dengan berbagai variasi konsentrasi.

3.4.2 Skrining Fitokimia Ekstrak Daun Kelor

Analisis fitokimia dilakukan untuk mendeteksi senyawa metabolit sekunder yaitu alkaloid, flavonoid, saponin dan tannin.

3.4.2.1 Uji Alkaloid

Ekstrak kental daun kelor ditambahkan 0,1 mL ke dalam tabung reaksi, kemudian ditambahkan 2 hingga 3 tetes pereaksi Dragendoff. Terbentuknya endapan berwarna merah jingga menunjukkan adanya alkaloid.

Syifa Aulia Rahmawati, 2025

APLIKASI KOMPOSIT BIOPESTISIDA EKSTRAK DAUN KELOR (MORINGA OLEIFERA. L) DENGAN BIONUTRIEN S-367B PADA TANAMAN BROKOLI (BRASSICA OLERACEA. L)

Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

3.4.2.2 Uji Flavonoid

Ekstrak kental daun kelor ditambahkan sebanyak 4 mL, kemudian ditambahkan sedikit serbuk magnesium dan diikuti dengan 1 mL HCl pekat. Perubahan warna dari jingga menjadi merah menunjukkan adanya flavon, sedangkan merah menjadi merah tua menunjukkan adanya flavonoid.

3.4.2.3 Uji Saponin

Ekstrak kental daun kelor ditambahkan sebanyak 0,1 mL dimasukkan ke dalam tabung reaksi. Sedikit aquades ditambahkan ke dalam tabung dan diaduk dengan cepat. Buih yang bertahan selama sekitar 15 menit menunjukkan adanya saponin.

3.4.2.4 Uji Tanin

Ekstrak kental daun kelor ditambahkan sebanyak 0,1 mL dan diencerkan dengan aquades dalam tabung reaksi, kemudian ditambahkan 2 hingga 3 tetes larutan besi klorida (FeCl3) 5%. Warna hijau-hitam atau biru menunjukkan adanya tanin (Mohammed et al., 2012)

3.4.3 Penetapan Kadar Total Fenol dengan Metode Folin-Ciocalteu Menggunakan Spektrofotometer UV-Vis

1) Pembuatan Pereaksi Fenol Folin-Ciocalteu 10%

Pereaksi Fenol Folin-Ciocalteu 10% dibuat dengan mengencerkan 10 mL pereaksi ke dalam labu ukur 100 mL dan ditambahkan aquades hingga tanda batas, lalu dihomogenkan.

2) Pembuatan Larutan Natrium Karbonat (Na₂CO₃) 7,5%

Larutan Natrium Karbonat (Na_2CO_3) 7,5% dibuat dengan melarutkan 37,50 \pm 0,01 gram Na_2CO_3 anhidrat ke dalam 500 mL labu ukur dan ditambahkan aquades lalu dihomogenkan.

- 3) Pembuatan Larutan Baku Standar Asam Galat 1000 ppm
 - Larutan baku standar asam galat dibuat dengan melarutkan 0,1 gr asam galat monohidrat dengan aquades ke dalam labu ukur 100 mL.
- 4) Pembuatan Larutan Standar Asam Galat 100 ppm

Larutan baku standar 1000 ppm diencerkan menjadi 100 ppm dengan cara memipet 10 mL larutan baku standar 1000 ppm, kemudian dimasukkan ke dalam labu ukur 100 mL dan dilarutkan dengan aquades hingga tanda batas.

5) Pembuatan Deret Standar 10, 20, 30, 40, 50 ppm

Larutan deret standar asam galat dibuat dengan memipet 1 mL, 2 mL, 3 mL, 4 mL dan 5 mL larutan baku 100 ppm, lalu diencerkan hingga 10 mL dengan aquades untuk mendapatkan konsentrasi (10, 20, 30, 40, dan 50) ppm.

Masing masing larutan standar asam galat diambil 0,1 mL ke dalam tabung reaksi dan dibuat juga larutan blanko (0,1 mL aquades). Ke dalam masing- masing tabung (standar dan blanko) ditambahkan 5 mL pereaksi Fenol Folin-Ciocalteu, didiamkan 8 menit, lalu ditambahkan 4 mL larutan natrium karbonat, dan didiamkan 50 menit. Absorbansi diukur pada 750 nm menggunakan spektofotometer UV-Vis (Kupina et al., 2019)

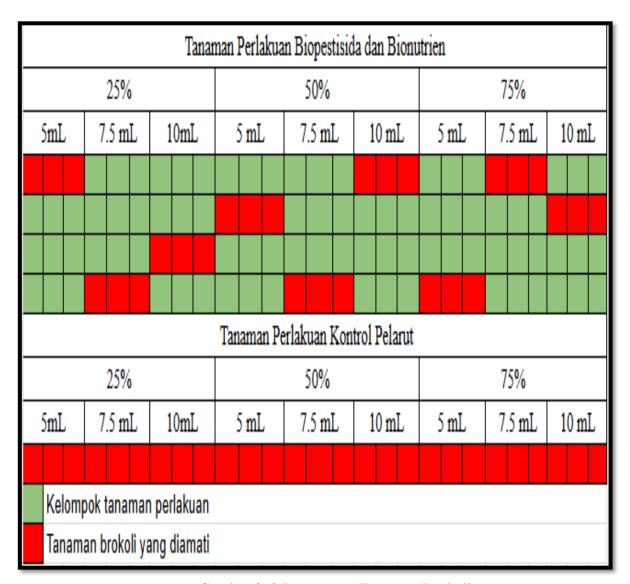
6) Penentuan kadar sampel

Sampel kering ekstrak daun kelor ditimbang sebesar 0.01 gram, kemudian dimasukkan ke dalam labu ukur 100 mL dan dilarutkan dengan aquades hingga tanda batas. Diambil 0,1 mL ekstrak dari hasil pengenceran ke dalam tabung reaksi. Sebanyak 5 mL pereaksi *Follin-Ciocalteu* ditambahkan lalu dikocok hingga homogen, kemudian setelah 8 menit dilanjutkan dengan penambahan pereaksi Na₂CO₃ 7.5% sebanyak 4mL. Diamkan pada suhu ruang selama 50 menit. Absorbansi sampel diukur pada 750 nm menggunakan spektofotometer UV-Vis (Kupina et al., 2019)

Spektrofotometri UV merupakan suatu teknik analisis spektroskopi yang menggunakan sumber cahaya untuk menerangi sampel dengan cahaya melintasi UV hingga rentang panjang gelombang tampak (biasanya 190 hingga 900 nm). Instrumen kemudian mengukur cahaya

47

yang diserap, ditransmisikan, atau dipantulkan oleh sampel pada setiap panjang gelombang (Agilent, 2021).


Kadar total fenol dihitung menggunakan rumus persamaan regresi linier dari asam galat, y = ax + b. Kandungan total fenol dalam tumbuhan dinyatakan dalam GAE (Gallic Acid Equivalent), yaitu jumlah kesetaraan asam galat dalam 1 gram sampel.

3.4.4 Karakterisasi Gugus Fungsi dengan Spektrofotometer FTIR

Sampel ekstrak kental daun kelor ditimbang sebanyak ± 1 gr dan dimasukkan ke dalam botol timbang bertutup dan diberi label, lalu dilakukan uji FTIR. Prinsip kerja dari spektrofotometer FTIR didasarkan pada penyerapan dan pemancaran radiasi inframerah dari suatu zat padat, cair, atau gas. Teknik ini digunakan untuk mengidentifikasi gugus fungsi khas yang terdapat dalam ekstrak daun kelor (*Moringa oleifera*. L). Sampel dipindai pada rentang bilangan gelombang 4000 hingga 400 cm⁻¹ dan akan diperoleh nilai puncak dari hasil serapan FTIR (Maheshwari et al., 2023).

3.4.5 Penomoran Sampel

Terdapat kelompok perlakuan dan kontrol pelarut untuk pengamatan tanaman brokoli yang dilakukan. Kelompok perlakuan diberikan komposit ekstrak daun kelor dan bionutrien S-367B dengan jumlah tanaman brokoli sebanyak 108 tanaman yang dibagi kepada 9 variasi dosis komposit dengan masing-masing dosis komposit memiliki 12 tanaman. Kontrol pelarut diberikan campuran larutan etanol 96% dan air dengan jumlah tanaman brokoli sebanyak 27 tanaman yang dibagi kepada 9 variasi dosis dengan masing-masing dosis kontrol pelarut memiliki 3 tanaman. Untuk kebutuhan data peneltian, hanya diamati 3 tanaman per variasi konsentrasi kelompok perlakuan dan kontrol pelarut.

Gambar 3. 2 Penomoran Tanaman Brokoli

3.4.6 Aplikasi dan Pengamatan

Pada tahap aplikasi, komposit biopestisida ekstrak daun kelor dan bionutrien S-367B dibuat dengan 3 variasi konsentrasi yaitu:

- 1) 25% (125 mL biopestisida ekstrak daun kelor + 375 mL bionutrien S-367B)
- 2) 50% (250 mL biopestisida ekstrak daun kelor + 250 mL bionutrien S-367B)
- 3) 75% (375 mL biopestisida ekstrak daun kelor + 125 mL bionutrien S-367B)

Masing masing konsentrasi, disemprotkan pada tanaman brokoli dengan dosis 5 mL; 7,5 mL; dan 10 mL yang dilarutkan dalam 1 L air. Tanaman brokoli kontrol hanya diberikan aquades dan etanol sesuai dengan variasi komposit yaitu:

- 1) 25% (125 mL etanol + 375 mL air)
- 2) 50% (250 mL etanol + 250 mL air)
- 3) 75% (375 mL etanol + 125 mL air)

Penyemprotan dilakukan setiap seminggu sekali hingga panen pada pagi hari. Pengamatan dilakukan terhadap tinggi tanaman, panjang daun, dan lebar daun, lalu pH tanah, kelembaban tanah dan juga massa hasil panen.

a) Pengukuran Panjang Daun dan Tinggi Tanaman Brokoli

Panjang daun, lebar daun, dan tinggi tanaman brokoli dilakukan pengukuran pertumbuhan disetiap minggunya. Pengamatan dilakukan hingga waktu panen dengan alat pengukuran pertumbuhan tanaman brokoli berupa penggaris dan alat tulis. Pengukuran dilakukan hanya pada 3 tanaman di setiap masing - masing dosis tanaman perlakuan dan kontrol.

b) Pengukuran pH dan Kelembaban Tanah

Pengukuran pH dan kelembaban tanah dilakukan pada tanah kelompok-kelompok perlakuan komposit (ekstrak daun kelor + bionutrien S-367B) dan kelompok kontrol pelarut (etanol + aquades). Pengukuran dilakukan menggunakan alat pH meter analog ETP306 3in1 yang diukur setiap seminggu sekali.

c) Hasil Panen

Hasil panen dari tanaman dicatat dan ditimbang massa yang diperoleh dari masing-masing kelompok tanaman yang diamati. Proses penimbangan tanaman brokoli hasil panen menggunakan alat timbang digital. Waktu panen tanaman brokoli dilakukan pada pagi hari dan saat cuaca cerah.