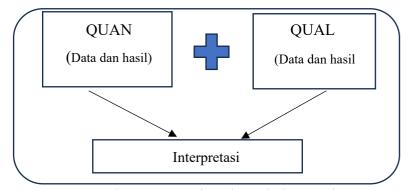
BAB III


METODE PENELITIAN

3.1 Metode dan Desain Penelitian

Pada penelitian ini menggunakan metode penelitian *mixed methods* (metode campuran) dengan *Triangulation Design*. Creswell & Plano Clark, (dalam Creswell, 2008, hlm. 552) menyatakan bahwa *mixed methods* merupakan prosedur untuk mengumpulkan, menganalisis, dan "mencampur" penelitian kuantitatif dan kualitatif serta metodenya dalam satu studi tunggal untuk memahami suatu masalah penelitian.

Creswell (2008, hlm. 556) mengklasifikasikan *mixed methods* ke dalam empat tipe desain, yaitu tipe *triangulation design*, *embedded design*, *explanatory design*, dan *exploratory design*. Desain penelitian yang digunakan dalam penelitian ini adalah *triangulation design*. Tujuan dari desain triangulasi adalah untuk mengumpulkan data kuantitatif dan kualitatif secara bersamaan, menggabungkan data, dan menggunakan hasilnya untuk memahami masalah penelitian. Alasan dasar untuk desain ini adalah bahwa satu bentuk pengumpulan data menyediakan kekuatan untuk mengimbangi kelemahan bentuk lainnya. Pada *triangulation design*, peneliti mengumpulkan data kuantitatif dan kualitatif, menganalisis kedua data secara terpisah, membandingkan hasil analisis kedua data, dan membuat interpretasi apakah hasilnya mendukung atau bertentangan satu sama lain. Peneliti memberikan prioritas yang sama pada data kuantitatif dan kualitatif serta mengumpulkan data kuantitatif maupun kualitatif secara bersamaan atau serentak selama penelitian (Creswell, 2008, hlm. 556).

Dibawah ini merupakan bagan dari desain penelitian *Triangulation* Design, sebagai berikut:

Gambar 3. 1 Desain Triangulation Design

Pada data kuantitatif peneliti menggunakan instrumen HE-CEDIMM (Heat Expansion Content Explanation Drawing Instrument for Mental Model) yang dianalisis berdasarkan aspek content, explanation, drawing. Hasil analisis tersebut dikategorikan dengan mengacu pada rubrik jawaban deskriptif dan visual, sehingga diperoleh kategori model mental, yaitu scientific, synthetic, dan initial. Selanjutnya, untuk data kualitatif, peneliti menggunakan DBTA (Drawing-Based Analysis) dengan menganalisis gambar berdasarkan jawaban penggambaran siswa melalui analisis tematik. Analisis ini memungkinkan peneliti merepresentasikan pemikiran siswa, sekaligus menjadikan gambar sebagai sarana untuk mengeksplorasi makna yang lebih mendalam terkait mekanisme proses pemuaian.

3.2 Subjek Penelitian/Partisipan

Partisipan yang digunakan adalah siswa SMA kelas XII di dua sekolah SMA yang ada di Kota Bandung dengan jumlah 60 siswa. Seluruh partisipan yang ikut dalam penelitian sudah mendapatkan pembelajaran mengenai materi suhu dan kalor khususnya pada topik pemuaian.

3.3 Prosedur Penelitian

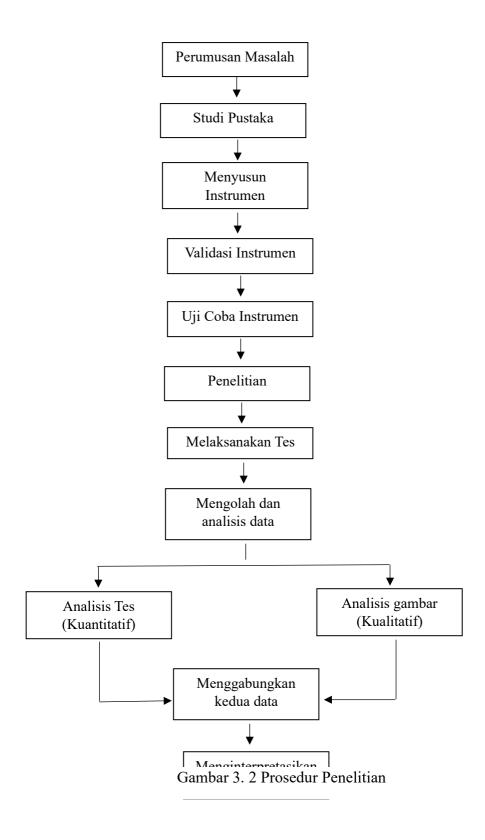
Prosedur penelitian dengan triangulation design dibawah ini sebagai berikut

A. Perancangan dan Pengumpulan Data

- 1. Merumuskan Masalah
- 2. Melakukan studi kepustakaan terkait teori dan konsep model mental, serta strategi analisisnya, dari berbagai sumber literatur yang relevan.
- 3. Merancang dan menyusun instrumen tes

- 4. Melakukan validasi instrumen
- 5. Melaksanakan uji coba instrumen kepada siswa
- Menyiapkan persiapan administratif, seperti pemilihan lokasi sekolah, koordinasi dengan guru, serta pengurusan izin penelitian dari instansi terkait.
- 7. Melaksanakan pengumpulan data melalui pemberian tes uraian

B. Analisis Data


- 1. Menganalisis data kuantitatif dengan menggunakan rubrik untuk mengelompokkan model mental siswa ke dalam kategori.
- 2. Menganalisis data kualitatif secara terpisah menggunakan analisis tematik, dengan mengkaji gambar untuk menafsirkan representasi visual siswa.

C. Penggabungan Data

Peneliti menggabungkan hasil analisis kuantitatif dan kualitatif yang sebelumnya telah dianalisis secara terpisah. Tujuannya adalah untuk mengidentifikasi informasi dari data kuantitatif dan kualitatif yang muncul sehingga peneliti dapat membandingkan dan melihat apakah hasil dari kedua data ini konsisten, berbeda, atau dapat disatukan (disintesis) untuk memberikan pemahaman yang lebih kuat. Hasilnya bisa ditampilkan dalam bentuk narasi, tabel gabungan atau diagram.

D. Interpretasi Data

Menyusun interpretasi akhir berdasarkan gabungan hasil kedua data untuk melihat apakah hasilnya mendukung satu sama lain atau justru bertentangan.

3.4 Instrumen Penelitian

Instrumen penelitian adalah suatu alat yang digunakan mengukur fenomena alam maupun sosial yang diamati (Sugiyono, 2013, hlm. 102).

3.4.1 HE-CEDIMM

HE-CEDIMM (Heat Expansion Content Explanation Drawing Instrument for Mental Model) merupakan instrumen tes model mental berbentuk uraian pada topik pemuaian, yang diadaptasi dari soal uraian tentang gaya gesek pada penelitian (Kurnaz & Eksi, 2015). Instrumen tes ini terdiri atas tiga pertanyaan. Pertanyaan pertama berfokus pada pemahaman konten (C) mengenai pemuaian. Pertanyaan kedua menggali alasan atau penyebab terjadinya pemuaian dalam suatu fenomena (E). Sementara itu, pertanyaan ketiga meminta peserta untuk menggambarkan interaksi antar molekul selama proses pemuaian secara mikroskopik (D). Hasil jawaban siswa dianalisis dan dikategorikan berdasarkan model mental menurut Kurnaz & Eksi (2015).

3.4.2 Rubrik Gambar

Penilaian pada jawaban gambar siswa dilakukan menggunakan rubrik penilaian yang memuat komponen penggambaran ilmiah. Rubrik ini menilai sejauh mana siswa mampu merepresentasikan konsep pemuaian secara visual berdasarkan perubahan ukuran objek sebelum dan sesudah pemanasan, perubahan jarak antarmolekul yang lebih rapat sebelum pemanasan dan saling menjauh setelah pemanasan, penggunaan panah pada molekul untuk menunjukkan arah dan cepat geraknya, arah gerak molekul yang bervariasi sesuai dengan proses pemuaian, serta kelengkapan tahapan gambar sesuai instruksi pada soal.

Dalam penelitian ini, gambar diposisikan sebagai artefak yang tidak hanya merepresentasikan pemikiran siswa, tetapi juga sebagai sarana untuk mengeksplorasi makna yang lebih dalam mengenai bagaimana mereka mengkonseptualisasikan proses pemuaian.

3.5 Teknik Pengujian Instrumen Penelitian

3.5.1 Uji Validitas Isi

Pengujian instrumen penelitian dilakukan untuk mengetahui apakah instrument tersebut layak digunakan sebagai instrumen pengumpul data penelitian. Instrumen yang valid berarti alat ukur yang digunakan untuk mendapatkan data (rnengukur) itu valid. Valid berarti instrumen tersebut dapat digunakan untuk mengukur apa yang seharusnya diukur (Sugiyono, 2013, hlm. 121). Tes berbentuk uraian yang telah disusun akan diuji kelayakannya dari segi validitas, yaitu melalui validitas isi.

Dalam penelitian ini, uji validitas isi dilakukan oleh lima ahli, termasuk empat dosen dan satu guru. Uji validasi dilakukan terhadap setiap soal yang mengacu pada aspek dilembar validasi yang terdiri dari lima aspek. Aspek penilaian instrument tes model mental dapat dilihat pada tabel 3.1 berikut.

Tabel 3. 1 Aspek Penilaian Validasi Ahli

No	Aspek Penilaian
1.	Butir soal mengujikan indikator model mental yang diukur
2.	Kunci jawaban relevan dengan konsep fisika
3.	Stimulus disajikan dengan jelas dan berfungsi dengan baik
4.	Rubrik penilaian dapat mengukur pemahaman siswa terhadap pemuaian
5.	Butir soal menggunakan bahasa Indonesia yang baik dan benar

Setiap ahli diberikan instrumen tes model mental untuk diisi pada lembar validasi dengan skala penilaian dari 1 (tidak relevan) hingga 5 (sangat relevan). Hasil uji validitas isi oleh ahli diolah menggunakan koefisien validasi Aiken (V) (Aiken, 1985).

Merujuk pada tabel minimum indeks V Aiken, untuk validator berjumlah lima orang dengan lima kategori maka nilai minimumnya sebesar 0,80. Dengan demikian, soal dikatakan memenuhi kriteria validitas isi untuk nilai indeks V Aiken sama dengan atau lebih dari 0,80 dan soal dikatakan tidak memenuhi kriteria validitas isi untuk nilai indeks V Aiken kurang dari 0,80.

Setelah dinilai oleh para ahli, validitas logis diuji menggunakan validasi Aiken berikut:

Tabel 3. 2 Validitas Butir Soal Menggunakan Validitas Ahli

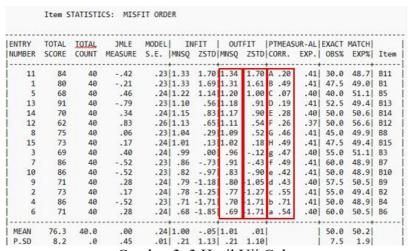
Butir		Ası	Rata-Rata	Ket			
Soal	Aspek 1	Aspek 2	Aspek 3	Aspek 4	Aspek 5		
1a	0,85	0,85	0,85	0,85	0,85	0,85	Valid
1b	0,85	0,85	0,9	0,85	0,90	0,87	Valid
1c	0,85	0,85	0,85	0,85	0,85	0,85	Valid
2a	0,85	0,85	0,85	0,85	0,90	0,86	Valid
2b	0,80	0,85	0,85	0,90	0,90	0,86	Valid
2c	0,90	0,90	0,9	0,95	0,95	0,88	Valid
3a	0,85	0,85	0,85	0,9	0,95	0,88	Valid
3b	0,85	0,85	0,85	0,85	0,90	0,86	Valid
3c	0,85	0,90	0,9	0,9	0,90	0,89	Valid
4a	0,85	0,90	0,85	0,9	0,90	0,88	Valid
4b	0,85	0,85	0,85	0,85	0,85	0,85	Valid
4c	0,85	0,90	0,9	0,9	0,90	0,89	Valid
5a	0,85	0,85	0,85	0,85	0,85	0,85	Valid
5b	0,85	0,85	0,85	0,85	0,85	0,85	Valid
5c	0,85	0,85	0,85	0,85	0,85	0,85	Valid

3.5.2 Uji Validitas Empirik

Setelah dilakukan validasi isi oleh para ahli, instrumen kemudian diuji cobakan kepada 40 siswa kelas XII di salah satu SMA di Bandung. Selanjutnya, hasil uji coba tersebut dianalisis menggunakan Model Rasch. Validitas empirik dengan menggunakan Model Rasch merujuk pada sejauh mana instrumen mampu mengukur karakteristik yang dimaksud sesuai dengan tujuan pengukuran. Melalui pemodelan ini, dapat dianalisis tingkat kesesuaian butir soal, kemampuan peserta didik, serta kualitas instrumen secara keseluruhan.

Analisis validitas untuk setiap butir soal menggunakan model Rasch diperoleh dengan melihat nilai Mean-Square Outfit (MNSQ), Z-Standard Outfit (ZSTD), dan Point Measure Correlation (Pt Measure Corr). Menurut Sumintono & Widhiarso (2015), kriteria untuk menilai apakah nilai yang diperoleh berada dalam rentang yang diterima atau tidak dapat diterima dilihat pada Tabel 3.3 berikut..

Tabel 3. 3 Kriteria kesesuaian butir soal


Kriteria	Rentang yang diterima
Outfit Mean Square (MNSQ)	0,5 < MNSQ < 1,5
Outfit Z Standard (ZSTD)	-2 < ZTSD < 2
Point Measure Correlation (PT	0,4 < PTMEA CORR < 0,85
MEASURE CORR)	

Hasil dari nilai kriteria tersebut kemudian diinterpretasikan berdasarkan kriteria nilai fit-statistic pada Tabel 3.4 berikut.

Tabel 3. 4 Interpretasi Kualitas Butir Soal

Kriteria Nilai Fit-Statistic	Rentang yang diterima
Ketiga kriteria nilai terpenuhi	Digunakan
Dua dari tiga kriteria nilai terpenuhi	_ Digunakan
Satu dari tiga kriteria nilai terpenuhi	Tidak Digunakan
Semua kriteria nilai tidak terpenuhi	- Haak Digunakan

Kategori kualitas butir soal instrumen tes analisis model mental pada materi pemuiaan berdasarkan hasil uji coba lapangan dengan 40 responden ditunjukkan pada Gambar 3.3 dan Tabel 3.5 melalui nilai fit-statistic

Gambar 3. 3 Hasil Uji Coba

Tabel 3. 5 Hasil Kualitas Butir Soal

Nomor	Nilai Outfit		Pt	Kriteria Nilai	Ket
Butir	MNSQ	ZSTD	Measure		
Soal			Corr		
1A	1,31	1,61	0,49	Ketiga kriteria nilai terpenuhi	Digunakan
1B	0,77	-1,27	0,55	Dua dari tiga kriteria nilai terpenuhi	Digunakan
1C	0,96	-0,12	0,47	Dua dari tiga kriteria nilai terpenuhi	Digunakan
2A	0,70	-1,71	0,71	Dua dari tiga kriteria nilai terpenuhi	Digunakan
2B	1,20	1,00	0,07	Dua dari tiga kriteria nilai terpenuhi	Digunakan
2C	0,69	-1,71	0,54	Dua dari tiga kriteria nilai terpenuhi	Digunakan
3A	0,91	0,43	0,49	Dua dari tiga kriteria nilai terpenuhi	Digunakan
3B	1,09	0,52	0,46	Ketiga kriteria nilai terpenuhi	Digunakan
3C	0,80	-1,05	0,43	Dua dari tiga kriteria nilai terpenuhi	Digunakan
4A	0,83	-0,90	0,42	Dua dari tiga kriteria nilai terpenuhi	Digunakan
4B	1,34	1,70	0,20	Dua dari tiga kriteria nilai terpenuhi	Digunakan
4C	1,11	0,54	0,26	Dua dari tiga kriteria nilai terpenuhi	Digunakan
5A	1,18	0,91	0,19	Dua dari tiga kriteria nilai terpenuhi	Digunakan
5B	1,17	0,90	0,28	Dua dari tiga kriteria nilai terpenuhi	Digunakan
5C	1,02	0,18	0,49	Dua dari tiga kriteria nilai terpenuhi	Digunakan

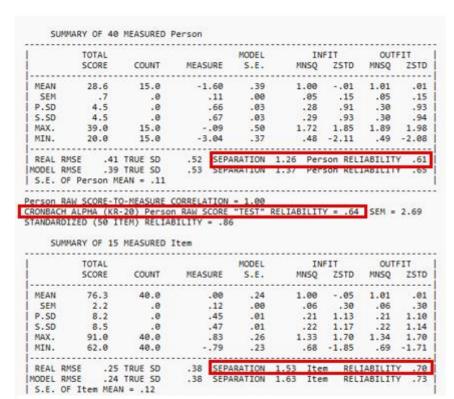
Tabel 3.5 menunjukkan hasil validasi instrumen tes model mental. Dari 15 butir soal yang dianalisis, dinyatakan keseluruhan soal valid dan dapat digunakan sebagai instrumen penelitian.

3.5.3 Reliabilitas

Instrumen yang reliabel merupakan instrurnen yang bila digunakan beberapa kali untuk rnengukur obyek yang sama, akan rnenghasilkan data yang sarna (Sugiyono, 2013, hlm. 121). Hasil uji reliabilitas mencakup beberapa indikator, termasuk person reliability, item reliability, dan nilai Cronbach Alpha. Person reliability mengukur konsistensi jawaban peserta didik, sedangkan item reliability menilai kualitas butir-butir soal dalam instrumen. Nilai Cronbach Alpha menggambarkan reliabilitas secara keseluruhan, mengukur interaksi antara person dan item. Kriteria reliabilitas ini dapat dilihat dalam tabel 3.6 berikut:

Tabel 3. 6 Interpretasi Nilai Person Reliability dan Item Reliability

Rentang Nilai Person Reliability dan Item Reliability	Interpretasi
r > 0.94	Baik sekali
$0.90 < r \le 0.94$	Sangat baik
$0.80 < r \le 0.90$	Baik
$0.67 < r \le 0.80$	Cukup
< 0,67	Rendah


(Sumintono & Widhiarso, 2015)

Tabel 3. 7 Interpretasi Nilai Cronbach Alpa

Rentang Nilai Person Reliability dan Item Reliability	Interpretasi
kr - 20 > 0.80	Sangat Tinggi
$0,70 \le kr - 20 < 0,20$	Tinggi
$0,60 \le kr - 20 < 0,70$	Baik
$0,50 \le kr - 20 < 0,60$	Sedang
< 0,50	Rendah

(Sumintono & Widhiarso, 2015)

Hasil uji reliabilitas instrumen dari output summary statistic pada software Winstep ditunjukkan pada Gambar 3.4 berikut.

Gambar 3. 4 Hasil Reliabilitas Instrument Model Mental

Berdasarkan Gambar 3.4 diatas maka *person reliability* bernilai 0,61 dengan kategori "Rendah", sementara *item reliability* sebesar 0,70 dengan kategori "Cukup". Nilai Cronbach's Alpha (KR-20) sebesar 0,64 dengan kategori "Baik".

3.5.4 Tingkat Kesukaran

Rasch Model juga dapat mengetahui tingkat kesukaran instrumen. Pemodelan rasch menggunakan skor per orang maupun skor per butir soal untuk mengestimasikan skor murni yang menunjukan tingkat kemampuan individu serta tingkat kesukaran butir. Rasch menggunakan fungsi logaritma untuk mengonversikan nilai peluang probabilistik yang ada sehingga menghasilkan garis skala dengan interval yang sama, fungsi logaritma ini dinamakan skala logit (Sumintono & Widhiarso, 2015). Skala logit menunjukan mistar pengukuran dengan interval yang sama, sehingga menghasilkan satuan yang dapat membandingkan yang disebut unit logit. Berdasarkan skala logit ini, peneliti bisa mendapatkan informasi mengenai tingkat kesukaran butir serta tingkat kemampuan siswa, serta pengelompokannya berdasarkan nilai standar deviasi.

Interpretasi mengenai tingkat kesulitan butir soal dapat ditemukan pada Tabel 3.8 berikut.

Tabel 3. 8 Interpretasi Taraf Kesukaran

Kriteria	Interpretasi
Measure logit > +SD	Sulit
-1SD < Measure logit ≤ +SD	Sedang
Measure logit < -SD	Mudah

(Sumintono & Widhiarso, 2015)

ENTRY	TOTAL	IQIAL	JMLE	MODEL	It	WFIT	001	TFIT	PTMEAS	UR-AL	EXACT	MATCH	
NUMBER	SCORE	COUNT	MEASURE	S.E.	MNSQ	ZSTD	MNSQ	ZSTD	CORR.	EXP.	OB5%	EXP%	Item
12	62	40	.83	.26	1.13	.65	1.11	.54	.26	.37	50.0	56.6	B12
5	68	40	.46	.24	1.22	1.14	1.20	1.00	.07	.40	40.0	51.1	B5
3	69	40	.40	.24	.99	.00	.96	12	.47	.40	55.0	51.1	B3
14	70	40	.34	.24	1.15	.83	1.17	.90	.28	.40	50.0	50.6	B14
6	71	40	.28	.24	.68	-1.85	.69	-1.71	.54	.40	60.0	50.5	B6
9	71	40	.28	.24	.79	-1.18	.80	-1.05	.43	.40	57.5	50.5	B9
9	73	40	.17	.24	.78	-1.25	.77	-1.27	.55	.41	55.0	49.4	B2
15	73	40	.17	.24	1.01	.13	1.02	.18	.49	.41	47.5	49.4	B15
8	75	40	.06	.23	1.04	.29	1.09	.52	.46	.41	45.0	49.9	88
1	80	40	21	.23	1.33	1.69	1.31	1.61	.49	.41	47.5	49.0	B1
11	84	40	42	.23	1.33	1.70	1.34	1.70	.20	.41	30.0	48.7	B11
4	86	40	52	.23	.71	-1.71	.70	-1.71	.71	.41	50.0	48.9	B4
7	86	40	52	.23	.86	73	.91	43	.49	.41	60.0	48.9	B7
10	86	40	52	.23	.82	97	.83	90	.42	.41	50.0	48.9	B10
13	91	40	79	.23	1.10	.56	1.18	.91	.19	.41	52.5	49.4	B13
									•	+		+	
MEAN	76.3	40.0	.00	.24	1.00	05	1.01	.01	1		50.0	50.2	
P.SD	8.2	.0	.45	.01	.21	1.13	.21	1.10	1	- 1	7.5	1.9	

Gambar 3. 5 Hasil Taraf Kesukaran Output Item Measure

Tabel 3. 9 Hasil Interpretasi Taraf Kesukaran

Nomor	Measure	Standar	Kriteria	Interpretasi
Butir	(ME)	Deviasi		
Soal		(SD)		
1A	-0,21	0,45	$-0.45 < -0.21 \le 0.45$	Sedang
1B	0,17	0,45	$-0.45 < 0.17 \le 0.45$	Sedang
1C	0,40	0,45	$-0.45 < 0.40 \le 0.45$	Sedang
2A	-0,52	0,45	-0.52 < -0.45	Mudah
2B	0,46	0,45	0,46 > 0,45	Sulit
2C	0,28	0,45	$-0.45 < 0.28 \le 0.45$	Sedang
3A	-0,52	0,45	-0.52 < -0.45	Mudah
3B	0,06	0,45	$-0.45 < 0.06 \le 0.45$	Sedang
3C	0,28	0,45	$-0.45 < 0.28 \le 0.45$	Sedang
4A	-0,52	0,45	-0.52 < -0.45	Mudah
4B	-0,42	0,45	$-0.45 < -0.42 \le 0.45$	Sedang
4C	0,83	0,45	0.83 > 0.45	Sulit
5A	-0,79	0,45	-0.79 < -0.45	Mudah
5B	0,34	0,45	$-0.45 < 0.34 \le 0.45$	Sedang
5C	0,17	0,45	$-0.45 < 0.17 \le 0.45$	Sedang

Berdasarkan Tabel 3.9 terdapat 4 butir soal termasuk tingkatan mudah, 9 butir soal termasuk tingkatan sedang, dan 2 butir soal termasuk tingkatan sulit.

3.6 Teknik Analisis Data

3.6.1 Analisis Model Mental

Pada penelitian ini, data dikumpulkan melalui instrumen tertulis dengan tes berbentuk uraian yang menghasilkan jawaban tertulis serta gambar visual dari siswa. Proses analisis dimulai dengan mencocokkan jawaban tes siswa dengan rubrik penilaian yang dikembangkan oleh Kurnaz & Eksi (2015) baik untuk respon deskriptif maupun visual, sebagai berikut

Tabel 3. 10 Rubrik Evaluasi untuk Respon Deskriptif

Tingkat Pemahaman	Skor	Kriteria
Sound Understanding	4	Jawaban mengandung semua
(SU)		komponen yang diterima secara ilmiah
Partial Understanding	3	Jawaban mengandung beberapa
(PU)		komponen dari respon diterima secara
		ilmiah
Partial Understanding	2	Jawaban menunjukkan bahwa konsep
with Alternative		tersebut dipahami tetapi juga
Conception (PU-AC)		mengandung konsepsi lainnya
Alternative Conception	1	Jawaban yang salah secara ilmiah dan
(AC)		berisi informasi yang tidak masuk akal
		atau tidak benar
	0	Respon kosong, tidak relevan atau
No Understanding (NU)		tidak jelas

Sedangkan untuk mengungkap model mental atas pertanyaan yang diajukan berupa pertanyaan yang menuntut jawaban visual/ gambar serta pengelompokan model mental mengacu pada rubrik yang dikembangkan oleh Kurnaz & Eksi (2015) seperti pada Tabel 3.11 di bawah ini

Tabel 3. 11 Rubrik Evaluasi untuk Respon Visual

Tingkat Pemahaman	Skor	Kriteria
Correct Depicting (CD)	4	Jawaban mencerminkan semua
		komponen penggambaran ilmiah
Partial Correct	3	Jawaban mencerminkan beberapa
Depicting (PCD)		komponen penggambaran ilmiah
Correct Drawing	2	Jawaban mencerminkan gambaran
reflecting also Non-		ilmiah atau parsial ilmiah tetapi juga
scientific Depicting (CD		menggambarkan yang non ilmiah
ND)		
Incorrect Depicting	1	Jawaban mencerminkan gambaran
(ID)		sepenuhnya non ilmiah
No Depicting (ND)	0	Jawaban kosong

Kemudian berdasarkan skor tingkat pemahaman model mental siswa baik secara deskriptif maupun visual, selanjutnya mengkategorikan model mental siswa dengan rubrik model mental yang mengacu pada Kurnaz & Eksi (2015) sebagai berikut

Tabel 3. 12 Rubrik Evaluasi untuk Model Mental

Level Model Mental	Kriteria	Tingkat pemahaman
Ilmiah/ Scientific	Persepsi yang	3 3 3
	bertepatan dengan	3 3 3
	pengetahuan ilmiah:	
	jawaban di Tingkat 3	
	atau 4	
Sintesis/ Shintetic	Persepsi yang	Semua kemungkinan
	sebagian bertepatan	
	atau tidak sesuai	
	dengan pengetahuan	
	ilmiah	
Awal/ Initial	Persepsi yang tidak	0 0 0
	sesuai dengan	111
	pengetahuan ilmiah:	2 2 2
	jawaban di level 0,1	
0.411.11.11	atau 2	1: 1 4 1 1:4 ::

Setelah dicocokkan maka selanjutnya melakukan analisis data kualitatif dengan menggunakan analisis tematik yaitu DBTA (drawing based thematic analysis). DBTA digunakan untuk mengidentifikasi pola tema yang muncul dari jawaban gambar siswa.

3.6.2 Analisis penggambaran menggunakan DBTA (*Drawing-Based Thematic Analysis*)

Penelitian ini melakukan analisis penggambaran dengan menggunakan DBTA (*Drawing-Based Thematic Analysis*), yaitu analisis tematik terhadap gambar pada jawaban gambar siswa sebagai salah satu bentuk data kualitatif, sebagaimana dijelaskan oleh (Hoppe & Holmegaard, 2022) analisis ini dilakukan dengan pendekatan *art-based research methods* dengan menempatkan gambar sebagai bentuk komunikasi non-verbal yang mampu mengungkap pemahaman siswa di luar keterbatasan narasi lisan dan tulisan.

35

Hoppe & Holmegaard (2022) menyatakan bahwa art-based research methods memberi ruang bagi siswa untuk menampilkan "pengetahuan tanpa kata" (wordless knowledge). Analisis dilakukan oleh peneliti pada gambar, khususnya pada makna simbolik serta proses refleksi yang tampak dalam visualisasi siswa pada elemen gambar dari proses pemuaian, seperti jarak antar molekul, ukuran molekul, peruabahan tanda panah di tiap molekul, perubahan ukuran benda seperti panjang, luas dan volume suatu zat serta kesesuaian antara gambar dengan konteks soal.

Analisis tematik dipilih karena bersifat fleksibel secara teoretis dan memungkinkan analisis pola makna yang beragam dari data kualitatif. Hal ini seperti yang dinyatakan oleh Braun dan Clarke (dalam Byrne, 2022, hlm. 1392) bahwa analisis tematik adalah pendekatan interpretatif terhadap analisis data kualitatif yang mudah diakses dan fleksibel secara teoretis, yang memfasilitasi identifikasi dan analisis pola atau tema dalam suatu kumpulan data. Pada pendekatan ini, Braun dan Clarke (dalam Byrne, 2022, hlm. 1391) menegaskan bahwa peneliti berperan aktif dalam membangun makna dari data. Oleh karena itu, tema tidak dianggap sudah ada di dalam data, tetapi dibentuk melalui keterlibatan reflektif peneliti terhadap data.

Lebih lanjut, dijelaskan oleh Braun dan Clarke (dalam Byrne, 2022, hlm 1396) proses pengodingan dan pengembangan tema bersifat fleksibel dan sangat sering berkembang sepanjang proses analisis. Perkembangan melalui analisis cenderung memfasilitasi pemahaman lebih lanjut terhadap data, yang selanjutnya dapat menghasilkan interpretasi pola makna baru. Sebagai pendekatan yang bersifat reflektif analisis tematik tidak menekankan pada pengujian reliabilitas antar-pengode Hal ini menunjukkan bahwa fokus utama bukan pada keseragaman teknis antar-pengode, melainkan pada keterlibatan sadar dan reflektif peneliti dalam proses analisis, serta bagaimana peneliti menginterpretasikan makna data secara mendalam dan relevan terhadap pertanyaan penelitian.

Braun dan Clarke (dalam Byrne, 2022, hlm. 1398) menyatakan bahwa analisis tematik terdiri dari enam fase yang dapat membantu peneliti dalam

mengidentifikasi dan menelaah aspek-aspek penting dari proses analisis data. Keenam fase ini tidak hanya berfungsi sebagai panduan pelaksanaan analisis tematik, tetapi juga sebagai kerangka pembelajaran bagi peneliti dalam memahami bagaimana analisis tematik dilakukan. Meskipun fase-fase tersebut disusun secara logis dan berurutan, proses analisis tematik tidak bersifat linier. Sebaliknya, analisis dilakukan secara rekursif dan iteratif, yang berarti peneliti perlu bergerak maju dan mundur antar fase sesuai kebutuhan. Dibawah ini enam fase analisis tematik, sebagai berikut:

1. Pengenalan Data

Fase pengenalan dilakukan dalam berbagai bentuk analisis kualitatif. Pengenalan memerlukan pembacaan ulang dari data. Hal ini dilakukan untuk dapat mengidentifikasi informasi yang tepat yang mungkin relevan dengan pertanyaan penelitian.

2. Membuat Kode Awal

Proses pengkodean dilakukan untuk menghasilkan label deskriptif atau interpretasi yang ringkas dan singkat untuk informasi yang relevan dengan pertanyaan penelitian. Peneliti bekerja secara sistematis melalui seluruh kumpulan data, memperhatikan setiap item data dengan pertimbangan yang sama dan mengidentifikasi aspek aspek dari item data yang informatif dalam mengembangkan tema. Kode harus singkat namun memberikan detail yang cukup untuk dapat berdiri sendiri dan menginformasikan kesamaan yang mendasari di antara item item data dalam kaitannya dengan subjek penelitian.

3. Menghasilkan tema-tema

Fase ini dimulai ketika seluruh data yang relevan telah selesai dikodekan. Fokus analisis kemudian berpindah dari interpretasi masing-masing data secara terpisah, menuju pemaknaan secara keseluruhan di seluruh kumpulan data. Data yang telah dikodekan dianalisis untuk melihat bagaimana kode-kode tersebut dapat digabungkan berdasarkan makna yang serupa, sehingga membentuk tema atau sub-tema. Proses ini sering kali melibatkan penggabungan beberapa kode yang memiliki konsep dasar atau ciri yang mirip menjadi satu kode tunggal. Tema tidak muncul begitu saja dari data,

melainkan dibentuk secara aktif oleh peneliti. Peneliti perlu menafsirkan hubungan antar-kode dan mempertimbangkan bagaimana hubungan tersebut dapat memberikan kontribusi terhadap narasi dari suatu tema. Kebermaknaan atau pentingnya suatu tema tidak bergantung pada jumlah kode atau banyaknya data yang mendasarinya, melainkan pada seberapa jauh pola dari kode-kode dan data tersebut dapat menyampaikan makna yang relevan dalam menjawab pertanyaan penelitian

4. Meninjau Tema Potensial

Pada tahap ini, peneliti melakukan peninjauan secara berulang terhadap tema-tema baik dalam kaitannya dengan data yang telah dikodekan maupun keseluruhan kumpulan data. Tujuannya adalah untuk menilai sejauh mana tema-tema tersebut benar-benar dapat mewakili makna data yang sesuai dengan pertanyaan penelitian. Dalam proses ini, sangat umum terjadi revisi, penggabungan, pemisahan, atau bahkan penghapusan tema dan kode, guna memperkuat kualitas analisis tematik yang dihasilkan.

5. Mendefinisikan dan Memberi Nama Tema

Pada fase ini, peneliti ditugaskan untuk menyajikan analisis mendalam terhadap kerangka tematik yang telah dibentuk. Setiap tema dan sub-tema perlu dijelaskan secara rinci dalam kaitannya dengan keseluruhan data dan pertanyaan penelitian. Selain itu setiap tema harus mampu menyampaikan narasi yang koheren dan konsisten secara internal, yang tidak bisa diwakili oleh tema-tema lainnya. Namun, semua tema tetap harus saling melengkapi untuk membentuk narasi yang utuh dan menyatu, sejalan dengan isi dataset serta mampu menjawab pertanyaan penelitian secara bermakna. Pada tahap ini, penamaan tema juga direvisi jika diperlukan agar lebih tepat mencerminkan isi dan makna yang terkandung dalam tema tersebut.

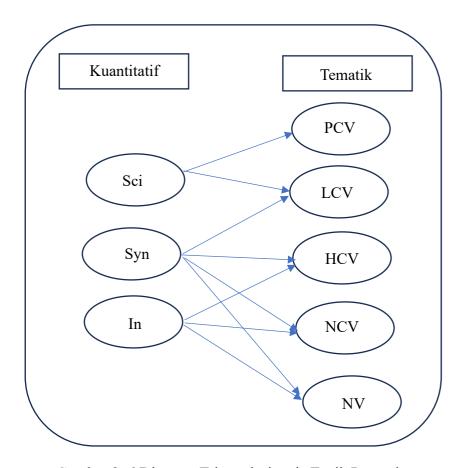
6. Menyusun Laporan

Pada tahap ini adalah menyusun urutan pelaporan tema. Tema-tema harus disajikan dalam susunan yang logis dan saling terhubung, membangun narasi yang kuat terhadap keseluruhan data. Bila memungkinkan, setiap tema sebaiknya mengembangkan atau memperluas tema sebelumnya, meskipun

tetap harus cukup mandiri untuk berdiri sebagai bagian naratif yang utuh jika dipisahkan dari tema lainnya.

Pada penelitian ini analisis menggunakan DBTA tidak sepenuhnya mengikuti enam fase analisis tematik menurut Braun & Clarke. Hal ini karena fokus penelitian bukan pada eksplorasi tema-tema potensial secara terpisah, melainkan pada tema yang di dalamnya sudah terkandung komponen-komponen ilmiah terkait topik pemuaian. Dengan demikian, analisis dilakukan lebih ringkas, yaitu dengan mengidentifikasi elemen visual pada gambar siswa (misalnya jarak molekul, arah panah, perubahan ukuran benda) kemudian dikategorikan berdasarkan tema tema, di mana tiap tema sudah mencerminkan representasi model mental siswa (ilmiah, campuran, non-ilmiah).

Dengan cara ini, analisis tetap berlandaskan prinsip tematik (mengidentifikasi pola makna dari data kualitatif), tetapi disederhanakan agar langsung menyoroti kandungan ilmiah pada representasi visual siswa.


3.6.3 Analisis Triangulasi

Peneliti menerapkan triangulasi metode dengan menggabungkan hasil dari instrumen HE-CEDIMM (Heat Expansion Content Explanation Drawing Instrument for Mental Model) dan DBTA (Drawing-Based Analysis). Data kuantitatif diperoleh melalui analisis HE-CEDIMM yang mengkategorikan model mental siswa ke dalam tiga kategori, yaitu scientific, synthetic, dan initial, berdasarkan aspek content, explanation, dan drawing. Sementara itu, data kualitatif diperoleh melalui DBTA dengan menelaah representasi visual siswa berdasarkan komponen penggambaran ilmiah, sehingga diperoleh kategori Prime Concept Visualization (PCV), Limited Concept Visualization (LCV), Hybrid Concept Visualization (HCV), No- Concept Visualization (NCV), dan No Visualization (NV).

Setelah kedua data tersebut dianalisis, dilakukan proses triangulasi dengan membandingkan dan memetakan keterkaitan antara kategori model mental hasil HE-CEDIMM dengan kategori hasil DBTA. Misalnya, siswa dengan model mental *scientific* cenderung menghasilkan visualisasi PCV atau LCV; siswa dengan model mental *synthetic* cenderung menghasilkan visualisasi LCV, HCV,

Sekar Nadya Aisyah Putri, 2025

NCV, atau NV; sedangkan siswa dengan model mental *initial* cenderung menghasilkan visualisasi HCV, NCV, atau NV. Hal tersbeut dapat dilihat pada Gambar 3.6 dibawah ini.

Gambar 3. 6 Diagram Triangulasi pada Topik Pemuaian