ESD TRAINING PROGRAM TO PROMOTE SCIENCE TEACHERS' COMPETENCIES TO INTEGRATE ACTION-ORIENTED ESD INTO SCIENCE LESSONS

DISSERTATION

Submitted to fulfill part of the requirements to obtain a Doctoral Degree in Natural Science Education

Arranged By

ELIYAWATI 2106687

ESD TRAINING PROGRAM TO PROMOTE SCIENCE TEACHERS' COMPETENCIES TO INTEGRATE ACTION-ORIENTED ESD INTO SCIENCE LESSONS

Oleh

Eliyawati

S.Pd, Universitas Pendidikan Indonesia, 2009

M.Pd, Universitas Pendidikan Indonesia, 2013

Sebuah disertasi yang diajukan untuk memenuhi salah satu syarat memperoleh gelar Doktor Pendidikan IPA (Dr) pada Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam

© Eliyawati 2025

Universitas Pendidikan Indonesia

Juli 2025

Hak Cipta dilindungi undang-undang.

Disertasi ini tidak boleh diperbanyak seluruhya atau sebagian,
dengan dicetak ulang, difoto kopi, atau cara lainnya tanpa ijin dari penulis

APPROVAL SHEET

Eliyawati

ESD TRAINING PROGRAM TO PROMOTE SCIENCE TEACHERS' COMPETENCIES TO INTEGRATE ACTION-ORIENTED ESD INTO SCIENCE LESSONS

Approved and accepted by Dissertation Committee

Promoter

Prof. Dr. Phil. Ari Widodo, M.Ed. NIP. 196705271992031001

Co-Promoter

Prof. Dr. Ida Kaniawati, M.Si NIP. 196807031992032001

Co-Promoter

Prof. Hiroki Fujii, Ph.D

Examiner I

Prof. Dr. Riandi, M.Ši NIP. 196305011988031002 Examiner II

Dr. Rini Solihat, M.Si NIP. 197902132001122001

Received by, Head of Science Education Study Program

Prof. Dr. Phil. Ari Widodo, M.Ed. NIP. 196705271992031001

PLAGIARISM FREE DECLARATION

I, the undersigned:

Name

: Eliyawati

Student ID

: 2106687

Major

: Pendidikan IPA-S3

· Title

: ESD Training Program to Promote Science Teachers'

Competencies to Integrate Action-Oriented ESD into Science

Lessons

Hereby declare that this written work is the result of my efforts. I guarantee that all parts of this work, whether in whole or in part, are free from plagiarism of other people's work, except for the sections that have been clearly stated and cited from the original sources.

If in the future any violation of academic ethics is found, including elements of plagiarism, I am willing to accept sanctions in accordance with the regulations applicable at the Universitas Pendidikan Indonesia

Bandung, August 22, 2025

Eliyawati

2106687

D3B7ANX01

ACKNOWLEDGEMENTS

Praise and thanks be to God Almighty, Allah S.W.T, for His blessing and grace so that I can complete this dcotoral thesis well. In the process of preparing this thesis, I have received a lot of support, guidance, and assistance from various parties. Therefore, I would like to express my deepest gratitude to:

- 1. Prof. Dr. Phil. Ari Widodo, M.Ed, as a promoter and Head of Science Education Study Program, who is very patient and always consistent in providing motivation, time, direction, guidance, and positive feedback so that the author can complete this doctoral thesis with enthusiasm. May Allah guarantee it with His blessings.
- 2. Prof. Dr. Ida Kaniawati, M.Si, as my co-promoter and the kindest lecturer in the science education study program. Thank you for all the help, love, and patience toward the Author from the beginning of the semester until now. Also, thank you for all the kind words and motivation toward the Author to finish this doctoral thesis. May Allah guarantee it with His blessings.
- 3. Prof. Hiroki Fujii, Ph.D as my co-promoter.
 - これまでの熱心なご指導、そして温かい励ましに、心から感謝しております。 先生のおかげで、この論文を無事に完成させることができました。 本当にありがとうございました。
 - Koremade no nesshin na go-shidō, soshite atatakai hagemashi ni, kokoro kara kansha shite orimasu. Sensei no okage de, kono ronbun o buji ni kansei saseru koto ga dekimashita. Hontō ni arigatō qozaimashita.
- 4. Prof. Dr. Riandi, M.Si. Thank you for your willingness to be the author's dissertation examiner. He is an excellent lecturer and has always motivated the author during authors' doctoral studies. Thank you for your valuable input to improve my doctoral thesis.
- 5. Dr. Rini Solihat, M.Si. Thank you for your willingness to be the author's dissertation examiner. She has been the author's lecturer since authors' undergraduate studies and has always instilled positive encouragement in completing authors' dissertation. Thank you for your suggestions and

- recommendations for improvement so that my doctoral thesis becomes much better.
- 6. My family, my beloved husband, Abbi Yudy, and my lovely sons, Haidar and Gibran, thank you for your endless understanding, cooperation, support, and patience throughout my doctoral journey. To my parents, Mama Euis and Bapak Uu, whose prayers have never ceased, thank you for your love and care since my childhood, and for the immeasurable patience you have always shown. You are the most incredible and supportive parents I could ever wish for. To my parents-in-law, Pak Haji and Mak Haji, as well as my siblings, Adella and Rizal, I am deeply grateful for your constant encouragement, affection, and sincerity in supporting every step of my journey. May Allah guarantee it with His Blessing.
- 7. Puslapdik and LPDP provided a doctoral scholarship through the Beasiswa Pendidikan Indonesia (BPI), which supported the author's studies and research over the past four years.
- 8. Prof. Dr. Diana Rochintaniawati, M.Ed, who has been like a mother on campus, always providing valuable life advice and motivation that has shaped me. Dr. Rika Rafikah Agustin, M.Pd, and Dr. Lilit Rusyati, M.Pd, as colleagues and the author's best partners in sharing experiences, offering continuous motivation, and being true friends in every situation.
- 9. All IPSE lecturers; Sir Eka, Sir Ikmanda, Sir Nanang, Sir Habib, Mrs. Ai, Mrs. Amaira, Miss Riana, and Miss Hanna, thank you for your encouragement, motivation, and togetherness. They all always support what the author does and are understanding when the author is busy with her studies.
- 10. All science education study program lecturers, Prof Asep Kadarohman, Prof Liliasari, Prof Nuryani, Prof Andi, Prof Parlindungan, Dr. Saeful Anwar, Dr. Asep Supriatna, Dr. Taufik Rahman and other science education study programs' lectureres. Thank you for all the knowledge, all the fun, and all the laughs that have been shared. Thank you for making the Author's journey become the most memorable thing that ever happened.

- 11. Miss Resik, Mr. Hanna, Mr. Andri, Miss Dea, Miss Martha and Mr. Latif. Thank you for your prompt assistance when author needed it. Thank you for your encouragement and motivation in completing authors' doctoral studies.
- 12. All IPSE Students, IPSE 2021, IPSE 2022, IPSE 2023, and IPSE 2024. Thank you for being a cooperative student and supporting the author in completing her doctoral studies.
- 13. Science education doctoral students batch 2021, BPI awardee Batch 2021, and students under Prof Ari's Supervision, especially Bu Anggun and Pak Suhendar and also others. Thank you for your cooperation during the mentoring sessions and for your constant motivation to push the author in submitting research progress. Thank you for being such amazing friends in Author life, and Author life will never be the same without them.
- 14. Friends from PIKK PLN, Geng Gule, and Geng Halis. Thank you for coloring the author's life during her doctoral studies, allowing the author to refresh for a moment from the very heavy study burden. Thank you for the jokes and togetherness. Your presence really makes the author more enthusiastic in completing her studies.
- 15. All science teachers who involved in authors' teacher training program especially Bu Wiwin, Bu Wahyu, Bu Dine, Bu Rabi, Bu Titin, Pak Jhon and Pak Rogis, Thank you for your extraordinary cooperation not only when the author carried out the teacher training program but also other activities until the author complete this doctoral thesis.
- 16. All of the teachers since the Author was in kindergarten, thank you for all of the knowledge that has been shared with the Author, thank you for always support the Author, and thank you for being a great teacher.
- 17. And last one, to myself. Thank you for surviving this far, even though at first you felt unable to finish it, but finally you can be at this stage and finish it. Thank you for your hard work during an education, and thank you also for not giving up easily in doing everything new. Hopefully, the experience gained can be useful in the future. May Allah grant health, blessings, and happiness to all who contributed to the completion of my doctoral thesis.

ABSTRACT

Education for Sustainable Development (ESD) implies the need to promote sustainable development through education. Due to the lack of teachers with an ESD background and students' textbooks being content-oriented rather than action-oriented, science teachers must develop strategies to integrate ESD into their teaching. Science teachers' abilities to incorporate ESD into science lessons are still lacking. It is important to develop science teachers' competencies to integrate ESD into science lesson through teacher training program. However, teacher training programs focusing on ESD and science teachers' competencies in integrating action-oriented ESD remain very limited. Therefore, this research attempts to promote science teachers' competencies to integrate action-oriented ESD into science lessons through ESD training program. The research method employed in this study was a mixed-methods intervention design consisting of three phases: before the intervention, experimental intervention, and after the intervention. Science teachers' competencies to integrate action-oriented ESD into science lessons, along with the ESD training program, were developed before the intervention. During the experimental intervention, both quantitative and qualitative data were collected simultaneously. To strengthen the findings, interviews and analysis of teachers' journals were conducted after the intervention. The research instruments used in this study were valid and reliable. The research subjects were 31 junior high school science teachers from Bandung, Bandung Barat, and Cimahi, consisting of 22 females and 9 males. The participants were selected using purposive sampling. The general activities of the teacher training program consist of ESD-based science learning for the given topic, ESD-based science learning for a free-tochoose topic, and eco-friendly actions. The implementation stages were conducted from January 9th to May 11th, 2024. The study's findings indicate that the ESD training program enhances science teachers' competencies to integrate action-oriented ESD into science lessons across all assessed standards (PCK, INQ, PP, EA, AT, and PD). The statistical analysis reveals a significant improvement in science teachers' PCK, science teachers' competencies in planning action-oriented ESD, science teachers' competencies in implementing action-oriented ESD, science teachers' attitude, and science teachers' commitment to follow professional development. Science teachers' competencies to integrate action-oriented ESD into science lessons in free-to-choose topic are better than in given topic. ESD training programs should include systematic reflection, more training in inquiry skills, and the maintenance of learning communities.

Keywords: Action-Oriented ESD, ESD Training Program, Science Teacher Competencies.

ABSTRAK

Pendidikan untuk Pembangunan Berkelanjutan (ESD) menyiratkan perlunya mempromosikan pembangunan berkelanjutan melalui pendidikan. Karena kurangnya guru berlatar belakang ESD dan buku teks siswa yang berorientasi pada konten daripada berorientasi pada tindakan, guru sains harus mengembangkan strategi untuk mengintegrasikan ESD ke dalam pengajaran mereka. Kemampuan guru sains untuk mengintegrasikan ESD ke dalam pembelajaran IPA masih kurang. Oleh karena itu, penting untuk mengembangkan kompetensi guru sains untuk mengintegrasikan ESD ke dalam pembelajaran sains melalui program pelatihan guru. Namun, program pelatihan guru yang berfokus pada ESD dan kompetensi guru sains dalam mengintegrasikan ESD berorientasi tindakan masih sangat terbatas. Oleh karena itu, penelitian ini berupaya untuk meningkatkan kompetensi guru sains untuk mengintegrasikan ESD berorientasi tindakan ke dalam pembelajaran sains melalui program pelatihan ESD. Metode penelitian yang digunakan dalam penelitian ini adalah desain intervensi metode campuran yang terdiri dari tiga fase: sebelum intervensi, intervensi eksperimental, dan setelah intervensi. Kompetensi guru sains untuk mengintegrasikan ESD berorientasi tindakan ke dalam pembelajaran sains, beserta program pelatihan ESD, dikembangkan sebelum intervensi. Selama intervensi eksperimental, data kuantitatif dan kualitatif dikumpulkan secara bersamaan. Untuk memperkuat temuan, wawancara dan analisis jurnal guru dilakukan setelah intervensi. Instrumen penelitian yang digunakan dalam penelitian ini valid dan reliabel. Subjek penelitian adalah 31 guru sains SMP dari Bandung, Bandung Barat, dan Cimahi, yang terdiri dari 22 perempuan dan 9 laki-laki. Peserta dipilih menggunakan purposive sampling. Kegiatan umum program pelatihan guru terdiri dari pembelajaran sains berbasis ESD untuk topik yang ditentukan, pembelajaran sains berbasis ESD untuk topik yang dipilih bebas, dan tindakan ramah lingkungan.. Tahapan implementasi dilakukan dari 9 Januari hingga 11 Mei 2024. Temuan penelitian menunjukkan bahwa program pelatihan ESD meningkatkan kompetensi guru sains untuk mengintegrasikan ESD berorientasi tindakan ke dalam pembelajaran sains di semua standar yang dinilai (PCK, INQ, PP, EA, AT, dan PD). Analisis statistik mengungkapkan peningkatan yang signifikan dalam PCK guru sains, kompetensi guru sains dalam merencanakan ESD berorientasi tindakan, kompetensi guru sains dalam menerapkan ESD berorientasi tindakan, sikap guru sains, dan komitmen guru sains untuk mengikuti pengembangan profesional. Kompetensi guru sains untuk mengintegrasikan ESD berorientasi tindakan ke dalam pembelajaran sains pada topik pilihan lebih baik daripada pada topik yang ditentukan. Program pelatihan ESD harus mencakup refleksi sistematis, pelatihan keterampilan inkuiri yang lebih intensif, dan pemeliharaan komunitas belajar.

Kata Kunci: ESD Berorientasi Tindakan, Program Pelatihan ESD, Kompetensi Guru Sains.

PREFACE

All praise be to Allah SWT, for His grace and guidance so that this Dissertation can be completed well. Blessings and greetings are always poured out to the Prophet Muhammad SAW. The inspiration to write the Dissertation entitled "ESD Training Program to Promote Science Teachers' Competencies to Integrate Action-Oriented ESD into Science Lessons" began with the author's interest in supporting the government's program to achieve SDGs' 2030, but ESD is not found in the existing Education curriculum in Indonesia. Moreover, there are no special teachers who integrate ESD into lessons, so science teachers are appointed to integrate it. Because existing science teachers do not have an ESD background, the ability to integrate ESD-based science still tends to be lacking. It needs to improve the competence of science teachers in integrating ESD into science lessons. Therefore, a study was conducted on the "ESD Training Program to Promote Science Teachers' Competencies to Integrate Action-Oriented ESD into Science Lessons". The findings in this paper are highly anticipated and will contribute to improving the professionalism of science teachers in integrating ESD into science lessons.

The completion of this dissertation would not have been possible without the assistance of various parties. The author expresses his gratitude for all the motivation, guidance, direction, and constructive ideas provided by various parties. May Allah reward all kindness abundantly, Amen. The author apologizes for any imperfections in this dissertation. Finally, he seeks guidance and blessings from Allah, hoping that this dissertation will contribute to the development of scientific knowledge, particularly ESD-based science learning.

Bandung, 03 Agustus 2025 Author,

Eliyawati

TABLE OF CONTENT

APPROVAL SHEET	
ACKNOWLEDGEMENTS	ii
ABSTRACT	V
PREFACE	
TABLE OF CONTENT	
LIST OF TABLES	
LIST OF FIGURES	
LIST OF APPENDICES	. XV
CHAPTER I INTRODUCTION	
1.1 Research Background	
1.2 Research Problem	
1.3 Research Objectives	
1.4 Operational Definition	
1.5 Limitation of Research	
1.6 Research Benefit	
1.7 Scope of the Research	. 12
CHAPTER II PROMOTING SCIENCE TEACHERS' COMPETENCIES TO	
INTEGRATE ACTION-ORIENTED ESD INTO SCIENCE LESSONS	
THROUGH ESD TRAINING PROGRAM	
2.1 Science Teacher Competencies	. 13
2.2 Science Teacher Competencies to Integrate Action-Oriented ESD into	
Science Lessons	
2.2.1. Pedagogical Content Knowledge	. 20
2.2.2. Inquiry	. 23
2.2.3. Professional Practice	. 26
2.2.4. Evaluation and Assessment	. 27
2.2.5. Attitude	. 29
2.2.6. Commitment to Follow Professional Development	32
2.3 ESD Training Program	
CHAPTER III RESEARCH METHODOLOGY	
3.1 Research Paradigm	
3.2 Research Design	
3.3 Research Subject	
3.4 Research Instrument	
3.5 Research Procedure	
3.6 Data Analysis	
3.6.1 Data Analysis of Teacher Training Program Trial Test	
3.6.2 Data Analysis of Research Result	
CHAPTER IV RESULT	
4.1 Science Teachers' PCK to Teach Action-Oriented ESD	
4.1.1 Science Teachers' PCK on Topics Given by the Instructors	. 78

4.1.2 Science Teachers' PCK on Their Free to choose Topics	87
4.1.3 The Comparison of Science Teachers' PCK on Given and Free-to-Choose Topics	98
4.1.4 The Development of Science Teachers' PCK	04
 4.2 Science Teachers' Competencies to Plan Action-Oriented ESD	
4.4 Science Teachers' Attitude Through Teacher Training Program on Action Oriented ESD	
4.5 Science Teachers' Commitment to Follow Professional Development	01
Through Teacher Training Program on Action-Oriented ESD	.05
CHAPTER V DISCUSSION2	
CHAPTER VI CONCLUSION, IMPLICATION, AND RECOMMENDATION	
	47
6.1 Conclusion	
6.2 Implication	
6.3 Recommendation	52
REFERENCES	55

LIST OF TABLES

Table 2.1 The Analysis of Science Teachers' Standard/Competencies	. 15
	10
Competency	. 19
Table 2.3 Indicators of Science Teachers' Competencies in Integrating Action-	0.1
Oriented ESD into Science Lessons for PCK	. 21
Table 2.4 Indicators of Science Teachers' Competencies in Integrating Action-	
Oriented ESD into Science Lessons for Inquiry	. 24
Table 2.5 Indicators of Science Teacher Competencies in Integrating Action-	
Oriented ESD into Science Lessons for Professional Practice	. 27
Table 2.6 Indicators of Science Teacher Competencies to Integrate Action-	
Oriented ESD into Science Lessons for Evaluation and Assessment	. 28
Table 2.7 Indicators of Science Teacher Competencies in Integrating Action-	
Oriented ESD Into Science Lessons for Attitude	. 31
Table 2.8 Indicators of Science Teacher Competencies in Integrating Action-	
Oriented ESD into Science Lessons for Commitment to Follow Professional	
Development	. 33
Table 3.1 Blueprint of PCK Questions	. 48
Table 3.2 The Validity of the PCK Test (Rasch Analysis)	
Table 3.3 Reliability of PCK Test (SPSS)	
Table 3.4 The Validity of the PCK Test (SPSS)	. 50
Table 3.5 The Blueprint of The Rubric to Plan ESD-Based Science Learning	
Table 3.6 The Blueprint of The Rubric to Implement ESD-Based Science	
Learning	. 53
Table 3.7 Commitment to Follow Professional Development and Science	
Teachers' Attitude	. 54
Table 3.8 The Reability of Trial Test I (n=89)	
Table 3.9 The Reability of Trial Test I (n=31)	
Table 3.10 The Validity Test Result	
Table 3.11 Implementation Stages	
Table 4.1 Science Teacher's PCK on Given Topic	
Table 4.2 Science Teacher's PCK on Free to choose Topic	
Table 4.3 The Result of Science Teachers' Competencies to Plan Action-Oriente	
ESD on Given and Free to Choose Topic	
Table 4.4 Some Aspects in ESD-based Science Learning Lesson Plans Given as	
Free to Choose Topics	
<u>*</u>	
Table 4.5 The Comparison of Learning Objectives Made by Teacher T3	
Table 4.6 The Comparison of The Kind of Assessment Made by Teacher T30	132
Table 4.7 The Average Score of Science Teacher's Competencies in Planning	120
Action-Oriented ESD in Each Indicator of PCK Standard	139
Table 4.8 The Average Score of Science Teacher's Competencies in Planning	1 4 6
Action-Oriented ESD in Each Indicator of Inquiry Standard	146

Table 4.9 The Average Score of Science Teacher's Competencies in Plan	ning
Action-Oriented ESD in Each Indicator of Assessment and Evaluation S	tandard
	150
Table 4.10 The Result of Science Teachers' Competencies to Implement	
Oriented ESD on Given and Free to Choose Topics	155
Table 4.11 The Percentage of Action Implementation in Both Topics	158
Table 4.12 The Average Score of Science Teacher's Competencies in	
Implementing Action-Oriented ESD in Each Indicator of PCK Standard.	168
Table 4.13 The Average Score of Science Teacher's Competencies in	
Implementing Action-Oriented ESD in Each Indicator of Inquiry Standar	rd 172
Table 4.14 The Average Score of Science Teacher's Competencies in	
Implementing Action-Oriented ESD in Each Indicator of Professional Pr	actice
Standard	175
Table 4.15 The Average Score of Science Teacher's Competencies in	
Implementing Action-Oriented ESD in Each Indicator of Assessment and	d
Evaluation Standard	178
Table 4.16 Science Teachers' Attitude Through Teacher Training Program	
Action-Oriented ESD	
Table 4.17 The Average Score of Science Teachers' Attitude in Each Indi	
Table 4.18 Science Teachers' Commitment to Follow Professional Devel	1
Through Teacher Training Program on Action-Oriented ESD	
Table 4.19 The Average Score of Science Teachers' Commitment to Followski.	
Professional Development in Each Indicator	
Table 5.1 Results of Monitoring Eco-Friendly Action Activities	
Table 5.2 Inquiry towards Science Teachers' Competencies to Implement	
Oriented ESD	241

LIST OF FIGURES

Figure 1.1 Overlay Visualization for Future Works on ESD Teacher Training	7
Figure 2.1 Standard of Science Teachers' Competencies in Integrating Action-	
Oriented ESD into Science Lessons	
Figure 2.2 Teacher Training Program Design Framework	
Figure 2.3 Procedure for Designing ESD Training Program	
Figure 2.4 Example of ESD Training Program Design	
Figure 3.1 Research Paradigm	
Figure 3.2 The Mixed Method Intervention Design	
Figure 3.3 Teacher Training Program Framework	
Figure 3.4 Procedure for Designing Teacher Training Programs	
Figure 3.5 An Example of ESD Training Program Design	
Figure 3.6 The General Activities of Implementation Stages	
Figure 3.7 Research Procedures	
Figure 3.8 Documentation of The Trial Test of Teacher Training Program	
Figure 3.9 The Result of the Limited Trial Test of Teacher Training Program	
Figure 4.1 The Distribution of Free Topic	
Figure 4.2 The Science Teacher's Reason for Free to Choose Topics	
Figure 4.3 The Comparison of Average PCK Score on Given and Free-to-Choo	
Topic	
Figure 4.4 The Percentages of The Development of Science Teachers' PCK	104
Figure 4.5 The Average Score of Science Teachers' Competencies in Planning	
Action-oriented ESD for Each Standard	134
Figure 4.6 The Comparison of Plan Well Structure Activities between Given ar	nd
Free to Choose Topics	141
Figure 4.7 An Example of a Worksheet that Explains ESD Dimensions	144
Figure 4.8 Example of a Worksheet that Shows Economic Dimensions	144
Figure 4.9 An Example of Technology Used by Teacher T26	145
Figure 4.10 Example of Learning Design that Stimulates Students to Make	
Hypotheses (Given Topic (yellow); Free to choose Topic (Green))	148
Figure 4.11 Example of Learning Activities that Use Engineering Process Desi	gn
	149
Figure 4.12 Example of Assessment that is Appropriate to ESD-Based Science	
Learning Materials	151
Figure 4.13 Example of Assessment that is Less Appropriate to ESD-Based	
Science Learning Materials	152
Figure 4.14 The Comparison of Evaluating the Prior Knowledge of Students	
According to ESD Issues in Science Lessons, Both Topics	
Figure 4.15 The Example Photo of Real Action for Sustainability	160
Figure 4.16 Separating the Waste Without Further Treatment	161
Figure 4.17 Socialize and Call to Action	162
Figure 4.18 The Average Score of Science Teacher's Competencies in	
Implementing Action-oriented ESD each standard	164

Figure 4.19 Examples of Scientific Investigation Activities and Student Action	
Journals17	74
Figure 4.20 Examples of Eco-Friendly Actions Carried Out by One School 18	37
Figure 4.21 An Example of An Action Journal Filled Out by a Science Teacher 19	94
Figure 4.22 Science Teacher Demonstrated How to Plant the Tree)1
Figure 4.23 Eco-Friendly Action Activities in Collaboration with The River Clea	n
Up Community)3
Figure 4.24 An Example of Science Teacher's Feedback on Lesson Study 21	17
Figure 5.1 Books Written by Science Teachers Who Are Members of the ESD	
Learning Community	28
Figure 5.2 Reflection-Action Cycle	33

LIST OF APPENDICES

Appendix 1	The development of the framework of science teachers'	283
Appendix 2	competencies to integrate ESD into science lessons Article about the indicators of science teachers' competencies to integrate ESD that have been developed,	316
	validated, and published	
Appendix 3	The results of the validation of the teacher training program	317
A 1' 4	design	220
Appendix 4	Article about the design of the action-oriented ESD teacher	329
Annondin 5	training program The detailed teacher training program on Action Oriented	220
Appendix 5	The detailed teacher training program on Action-Oriented ESD	330
Appendix 6	The detailed of PCK open-ended questions	334
Appendix 7	The results of the readability test, validation, and revised	340
Appendix /	questions of PCK	3 4 0
Appendix 8	The readability and validation of PCK Test	350
Appendix 9	The example of science teacher's answers to PCK Test	356
Appendix 10	The Detailed of Blueprint of The Rubric to Plan ESD-Based	374
Appendix 10	Science Learning	3/4
Appendix 11	The Validation result of the Rubric to Plan and Implement	377
Appendix 11	ESD-Based Science Learning	311
Appendix 12	The final version of the Rubric to Plan ESD-Based Science	389
Appendix 12	Learning	309
Appendix 13	The Detailed of Blueprint of The Rubric to Implement ESD-	405
Appendix 13	Based Science Learning	403
Appendix 14	The final version of the Rubric to Implement ESD-Based	407
Appendix 14	Science Learning	707
Appendix 15	The final version of questionnaire (Science Teachers'	418
Appendix 13	Attitude and Professional Development)	710
Appendix 16	The Final Version of Teachers' Journal	421
Appendix 17	The Article of Analysis Science Textbook	429
Appendix 18	The result of readability test of Teacher Training Program	430
Appendix 10	Module	750
Appendix 19	Science Teachers' PCK Score	435
Appendix 20	Statistical Test Result of PCK	443
Appendix 21	PCK development of each individual science teacher	447
Appendix 22	Detailed scoring results in planning action-oriented ESD for	448
rippendix 22	given topic	110
Appendix 23	Detailed scoring results in planning action-oriented ESD for	449
rippendix 23	free-to-choose topic	117
Appendix 24	Detailed scoring results in implementing action-oriented	450
rippendix 2 i	ESD for given topic	150
Appendix 25	Detailed scoring results in implementing action-oriented	451
1 ppendix 23	ESD for free-to-choose topic	.51
Appendix 26	Statistical Test Result of planning action-oriented ESD	452
Appendix 27	Statistical Test Result of implement action-oriented ESD	454
Appendix 28	Science teachers' attitude Score	455
TPPOHOIA 20	Solding toughold attitude Soldie	155

Science teacher's commitment to follow professional	459
development Score	
Statistical Result of Science teachers' attitude Score	463
The detailed results of the analysis on science teachers'	465
attitude Indicator	
Statistical Result of Science teacher's commitment to follow	469
professional development	
The detailed results of the analysis on Science teacher's	471
commitment to follow professional development	
The Statistical Result of Inquiry Towards Science Teachers'	475
Competencies in Implementing Action-Oriented ESD.	
Letter of Teacher Training Program Invitation for Science	476
Teachers	
Documentation	477
Bibliography	478
	development Score Statistical Result of Science teachers' attitude Score The detailed results of the analysis on science teachers' attitude Indicator Statistical Result of Science teacher's commitment to follow professional development The detailed results of the analysis on Science teacher's commitment to follow professional development The Statistical Result of Inquiry Towards Science Teachers' Competencies in Implementing Action-Oriented ESD. Letter of Teacher Training Program Invitation for Science Teachers Documentation

REFERENCES

- Agency, E., & Commision, E. (2007). Competency of Science Teachers. In Socrates Programme Education. Retrieved December 12, 2021 from http://www.iqst.upol.cz/project/Competency%20CST-UP.pdf.
- Ahmed, A. T., & Shogbesan, Y. O. (2023). Exploring pedagogical content knowledge of teachers: a paradigm for measuring teacher's effectiveness. *Pedagogi: Jurnal Ilmu Pendidikan, 23*(1), 64-73. https://doi.org/10.24036/pedagogi.v23i1.1540.
- Aksela, M., & Haatainen, O. (2019). Project-based learning (PBL) in practise: Active teachers' views of its' advantages and challenges. In *International STEM in Education Conference* (pp. 9-16). Queensland University of Technology.
- Alake-Tuenter, E., Biemans, H. J., Tobi, H., Wals, A. E., Oosterheert, I., & Mulder, M. (2012). Inquiry-based science education competencies of primary school teachers: A literature study and critical review of the American National Science Education Standards. *International journal of science education*, 34(17), 2609-2640. https://doi.org/10.1080/09500693.2012.669076.
- Alimuddin, Z., Tjakraatmadja, J. H., Ghazali, A., & Ginting, H. (2021). Improving Pedagogical Content Knowledge (PCK) through a blended model of PCK and action learning. *Teacher Development*, 25(5), 622-646. https://doi.org/10.1080/13664530.2021.1935311
- Alkhatib, O. J. (2019, March). A framework for implementing higher-order thinking skills (problem-solving, critical thinking, creative thinking, and decision-making) in engineering & humanities. In 2019 Advances in science and engineering technology international conferences (ASET) (pp. 1-8). IEEE.
- Allen, D., & Tanner, K. (2006). Rubrics: Tools for making learning goals and evaluation criteria explicit for both teachers and learners. *CBE—Life Sciences Education*, 5(3), 197-203. https://doi.org/10.1187/cbe.06-06-0168.
- Alsop, S., & Bencze, L. (2014). Activism! Toward a more radical science and technology education. In *Activist science and technology education* (pp. 1-19). Dordrecht: Springer Netherlands.
- Altieri, M. A., Nicholls, C. I., Henao, A., & Lana, M. A. (2015). Agroecology and the design of climate change-resilient farming systems. *Agronomy for sustainable development*, 35(3), 869-890. https://doi.org/10.1007/s13593-015-0285-2.
- Ambrosetti, A. (2014). Are you ready to be a mentor?: Preparing teachers for mentoring pre-service teachers. *Australian Journal of Teacher Education* (Online), 39(6), 30-42.
- Anderson, A. (2012). Climate change education for mitigation and adaptation. *Journal of Education for Sustainable development*, 6(2), 191-206. https://doi.org/10.1177/0973408212475199.
- Andersson, E., & Öhman, J. (2017). Young people's conversations about environmental and sustainability issues in social media. *Environmental Education Research*, 23(4), 465-485. https://doi.org/10.1080/13504622.2016.1149551

- Anwar, Y., Rustaman, N. Y., & Widodo, A. (2012). Kemampuan subject specific pedagogy calon guru biologi peserta program pendidikan profesional guru (ppg) yang berlatar belakang basic sains pra dan post workshop. *Jurnal Pendidikan IPA Indonesia*, *I*(2). https://doi.org/10.15294/jpii.v1i2.2133
- Ardoin, N. M., Bowers, A. W., & Gaillard, E. (2020). Environmental education outcomes for conservation: A systematic review. *Biological conservation*, 241, 108224. https://doi.org/10.1016/j.biocon.2019.108224
- ASTA, N. S. S. C. o. (2002). National Professional Standard for Highly Accomplished Teachers of Science: Australian Science Teachers Association (ASTA).
- Ausubel, D. P., Novak, J. D., & Hanesian, H. (1978). Educational psychology: A cognitive view. Holt, Rinehart and Winston: New York.
- Avalos, B. (2011). Teacher professional development in teaching and teacher education over ten years. *Teaching and Teacher Education*, 27(1), 10-20. https://doi.org/10.1016/j.tate.2010.08.007.
- Ayers, J., Bryant, J., & Missimer, M. (2020). The use of reflective pedagogies in sustainability leadership education—A case study. *Sustainability*, 12(17), 6726. https://doi.org/10.3390/su12176726.
- Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? *Journal of teacher education*, 59(5), 389-407. https://doi.org/ 10.1177/0022487108324554.
- Ballantyne, R., & Packer, J. (2005). Promoting environmentally sustainable attitudes and behaviour through free-choice learning experiences: what is the state of the game? *Environmental Education Research*, 11(3), 281-295. https://doi.org/10.1080/13504620500081145.
- Bamber, P. (2019). Teacher education for sustainable development and global citizenship: Critical perspectives on values, curriculum and assessment. New York: Taylor & Francis.
- Bandura, A. (1997). *Self-efficacy: The exercise of control*. New York: W.H. Freeman and Company.
- Bandura, A. (2000). Exercise of human agency through collective efficacy. *Current directions in psychological science*, 9(3), 75-78. https://doi.org/10.1111/1467-8721.00064.
- Bandura, A. (2001). Social cognitive theory: An agentic perspective. *Annual review of psychology*, 52(1), 1-26. https://doi.org/10.1146/annurev.psych.52.1.1.
- Barth, M., Godemann, J., Rieckmann, M., & Stoltenberg, U. (2007). Developing key competencies for sustainable development in higher education. *International journal of sustainability in higher education*, 8(4), 416-430. https://doi.org/10.1108/14676370710823582.
- Bascopé, M., Perasso, P., & Reiss, K. (2019). Systematic Review of Education for Sustainable Development at an Early Stage: Cornerstones and Pedagogical Approaches for Teacher Professional Development. *Sustainability*, 11(3), 719. https://doi.org/10.3390/su11030719
- Bassett, D. R., Pucher, J., Buehler, R., Thompson, D. L., & Crouter, S. E. (2008). Walking, cycling, and obesity rates in Europe, North America, and Australia.

- Journal of physical activity and health, 5(6), 795-814. https://doi.org/10.1123/jpah.5.6.795.
- Berglund, T., Gericke, N., & Chang Rundgren, S.-N. (2014). The implementation of education for sustainable development in Sweden: Investigating the sustainability consciousness among upper secondary students. *Research in Science & Technological Education*, 32(3), 318-339. https://doi.org/10.1080/02635143.2014.944493.
- Berland, L. K., & Reiser, B. J. (2011). Classroom communities' adaptations of the practice of scientific argumentation. *Science education*, 95(2), 191-216. https://doi.org/10.1002/sce.20420.
- Berliner, D. C. (2001). Learning about and learning from expert teachers. *International journal of educational research*, 35(5), 463-482. https://doi.org/10.1016/S0883-0355(02)00004-6.
- Biggs, J. (1996). Enhancing teaching through constructive alignment. *Higher education*, 32(3), 347-364. https://doi.org/10.1007/BF00138871
- Biggs, J., Tang, C., & Kennedy, G. (2022). *Teaching for quality learning at university Fourth Edition*. United Kingdom: McGraw-hill education.
- Birdsall, S. (2014). Measuring student teachers' understandings and self-awareness of sustainability. *Environmental Education Research*, 20(6), 814-835. https://doi.org/10.1080/13504622.2013.833594.
- Birdsall, S. (2015). Analysing teachers' translation of sustainability using a PCK framework. *Environmental Education Research*, 21(5), 753-776. https://doi.org/10.1080/13504622.2014.933776.
- Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education, 5 (1), 7–74. King's College London: Reino Unido.
- Blömeke, S., & Delaney, S. (2012). Assessment of teacher knowledge across countries: A review of the state of research. *ZDM Mathematics Education*, 44(3), 223-247. https://doi.org/10.1007/s11858-012-0429-7.
- Boeve-de Pauw, J., Gericke, N., Olsson, D., & Berglund, T. (2015). The effectiveness of education for sustainable development. *Sustainability*, 7(11), 15693-15717. https://doi.org/10.3390/su71115693.
- Boeve-de Pauw, J., Olsson, D., Berglund, T., & Gericke, N. (2022). Teachers' ESD self-efficacy and practices: A longitudinal study on the impact of teacher professional development. *Environmental Education Research*, 28(6), 867-885. https://doi.org/10.1080/13504622.2022.2042206.
- Boeve-de Pauw, J., & Van Petegem, P. (2018). Eco-school evaluation beyond labels: The impact of environmental policy, didactics and nature at school on student outcomes. *Environmental Education Research*, 24(9), 1250-1267. https://doi.org/10.1080/13504622.2017.1307327.
- Bogner, J., Pipatti, R., Hashimoto, S., Diaz, C., Mareckova, K., Diaz, L., Gao, Q. (2008). Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation). Waste Management & Research, 26(1), 11-32. https://doi.org/10.1177/0734242x07088433

- Boon, H. J. (2011). Beliefs and education for sustainability in rural and regional Australia. *Education in Rural Australia*, 21(2), 37-54.
- Borg, C., Gericke, N., Höglund, H.-O., & Bergman, E. (2012). The barriers encountered by teachers implementing education for sustainable development: Discipline bound differences and teaching traditions. *Research in Science & Technological Education*, 30(2), 185-207. https://doi.org/10.1080/02635143.2012.699891.
- Borg, C., Gericke, N., Höglund, H.-O., & Bergman, E. (2014). Subject-and experience-bound differences in teachers' conceptual understanding of sustainable development. *Environmental Education Research*, 20(4), 526-551. https://doi.org/10.1080/13504622.2013.833584.
- Borko, H. (2004). Professional development and teacher learning: Mapping the terrain. *Educational researcher*; 33(8), 3-15. https://doi.org/10.3102/0013189X033008003.
- Boud, D., & Cohen, R. (2014). Peer learning in higher education: Learning from and with each other. London And New York: Routledge Taylor and Francis Group.
- Boud, D., Keogh, R., & Walker, D. (2013). *Reflection: Turning experience into learning*. London And New York: RoutledgeFalmer Taylor and Francis Group.
- Bourn, D. (2016). Teachers as agents of social change. *International journal of development education and global learning*, 7(3), 63-77.
- Bransford, J., Brown, A., & Cocking, R. (2000). *How People Learn: Brain, Mind, Experience, and School.* Wachington DC: National Academy Press.
- Bravo, P., & Cofré, H. (2016). Developing biology teachers' pedagogical content knowledge through learning study: the case of teaching human evolution. *International Journal of Science Education*, 38(16), 2500-2527. http://dx.doi.org/10.1080/09500693.2016.1249983.
- Brookfield, S. (2009). The concept of critical reflection: Promises and contradictions. *European journal of social work, 12*(3), 293-304. https://doi.org/10.1080/13691450902945215.
- Brophy, J. (1988). Educating teachers about managing classrooms and students. *Teaching and Teacher Education*, 4(1), 1-18. https://doi.org/10.1016/0742-051X(88)90020-0.
- Brophy, J. E. (1984). *Teacher behavior and student achievement*. Michigan: College of Education Michigan State University.
- Buckler, C., & Creech, H. (2014). Shaping the future we want: UN Decade of Education for Sustainable Development; final report: Unesco. Available online at https://sustainabledevelopment.un.org/content/documents/1682Shaping%20 the%20future%20we%20want.pdf. [Accessed 13 July 2022].
- Bulajic, A., Stamatovic, M., & Cvetanovic, S. (2012). The importance of defining the hypothesis in scientific research. *International Journal of Education Administration and Policy Studies*, 4(8), 170-176. https://doi.org/10.5897/IJEAPS12.009.

- Bürgener, L., & Barth, M. (2018). Sustainability competencies in teacher education: Making teacher education count in everyday school practice. *Journal of Cleaner Production*, 174, 821-826. https://doi.org/10.1016/j.jclepro.2017.10.263.
- Burmeister, M., Rauch, F., & Eilks, I. (2012). Education for Sustainable Development (ESD) and chemistry education. *Chemistry Education Research and Practice*, 13(2), 59-68. https://doi.org/10.1039/C1RP90060A.
- Bybee, R. W. (2015). *The BSCS 5E instructional model: Creating teachable moments*. Arlington, Virginia: NSTA Press.
- Cajkler, W., Wood, P., Norton, J., & Pedder, D. (2014). Lesson study as a vehicle for collaborative teacher learning in a secondary school. *Professional development in education*, 40(4), 511-529. https://doi.org/10.1080/19415257.2013.866975.
- Cebrián, G., & Junyent, M. (2015). Competencies in education for sustainable development: Exploring the student teachers' views. *Sustainability*, 7(3), 2768-2786. https://doi.org/10.3390/su7032768.
- Cess-Newsome, J. (1999). Secondary teachers' knowledge and beliefs about subject matter and their impact on instruction. In *Examining pedagogical content knowledge: The construct and its implications for science education* (pp. 51-94): Springer.
- Chalmers, N., Gough, S., & Scott, W. (2003). Sustainable development and learning: Framing the issues. London And New York: RoutledgeFalmer Taylor and Francis Group.
- Chan, K. K. H., & Yung, B. H. W. (2018). Developing pedagogical content knowledge for teaching a new topic: More than teaching experience and subject matter knowledge. *Research in science education*, 48, 233-265. https://doi.org/10.1007/s11165-016-9567-1
- Chen, Z., & Chen, R. (2022). Exploring the key influencing factors on teachers' reflective practice skill for sustainable learning: a mixed methods study. *International Journal of Environmental Research and Public Health*, 19(18), 11630. https://doi.org/10.3390/ijerph191811630.
- Cheng, Z., Gu, T., & Li, C. (2022). The formation mechanism of social identity based on knowledge contribution in online knowledge communities: empirical evidence from China. *Sustainability*, 14(4), 2054. https://doi.org/10.3390/su14042054.
- Chickering, A. W., & Gamson, Z. F. (1989). Seven principles for good practice in undergraduate education. *Biochemical Education*, 17(3), 140-141.
- Christ, T., Arya, P., & Liu, Y. (2019). Technology integration in literacy lessons: Challenges and successes. *Literacy Research and Instruction*, *58*(1), 49-66. https://doi.org/10.1080/19388071.2018.1554732.
- Cialdini, R. B. (2003). Crafting normative messages to protect the environment. *Current directions in psychological science*, 12(4), 105-109. https://doi.org/10.1111/1467-8721.01242.
- Corney, G., & Reid, A. (2007). Student teachers' learning about subject matter and pedagogy in education for sustainable development. *Environmental*

- Education Research, 13(1), 33-54. https://doi.org/10.1080/13504620601122632.
- Cotton, D. R., Warren, M. F., Maiboroda, O., & Bailey, I. (2007). Sustainable development, higher education and pedagogy: a study of lecturers' beliefs and attitudes. *Environmental Education Research*, 13(5), 579-597. https://doi.org/10.1080/13504620701659061.
- Creswell, J. W. (2015). *Educational research: Planning, conducting, and evaluating quantitative and qualitative research.* New York: Pearson.
- Creswell, J. W., & Creswell, J. D. (2018). Research design: Qualitative, quantitative, and mixed methods approaches fifth edition. United Kingdom: Sage publications.
- Creutzig, F., Baiocchi, G., Bierkandt, R., Pichler, P.-P., & Seto, K. C. (2015). Global typology of urban energy use and potentials for an urbanization mitigation wedge. *Proceedings of the national academy of sciences, 112*(20), 6283-6288. https://doi.org/10.1073/pnas.1315545112.
- Darling-Hammond, D. (2000). Teacher quality and student Achievement. A review of state policy evidence: Educational Policy Analysis Archives, 8 (1) Retrieved May 2, 20022 from http. *olam. ed. asu. edu*.
- Darling-Hammond, L. (2017). Teacher education around the world: What can we learn from international practice? *European journal of teacher education*. doi:10.1080/02619768.2017.1315399
- Darling-Hammond, L., Hyler, M. E., & Gardner, M. (2017). Effective teacher professional development. Palo Alto: Learning Policy Institute.
- Darling-Hammond, L., & McLaughlin, M. W. (1995). Policies that support professional development in an era of reform. *Phi delta kappan*, 76(8), 597-604. https://doi.org/10.1177/003172171109200622.
- Daskalopoulos, E., Badr, O., & Probert, S. (1998). Municipal solid waste: a prediction methodology for the generation rate and composition in the European Union countries and the United States of America. *Resources, conservation and recycling*, 24(2), 155-166. https://doi.org/10.1016/S0921-3449(98)00032-9.
- Davis, E. A., & Krajcik, J. S. (2005). Designing educative curriculum materials to promote teacher learning. *Educational researcher*, 34(3), 3-14. https://doi.org/10.3102/0013189X034003003.
- Day, C., & Gu, Q. (2007). Variations in the conditions for teachers' professional learning and development: Sustaining commitment and effectiveness over a career. *Oxford review of education*, 33(4), 423-443. https://doi.org/10.1080/03054980701450746.
- Day, C., & Gu, Q. (2010). The new lives of teachers. United States: Routledge.
- Deci, E. L., & Ryan, R. M. (2013). *Intrinsic motivation and self-determination in human behavior*. New York: Springer Science & Business Media.
- Depaepe, F., Verschaffel, L., & Kelchtermans, G. (2013). Pedagogical content knowledge: A systematic review of the way in which the concept has pervaded mathematics educational research. *Teaching and Teacher Education*, 34, 12-25. https://doi.org/10.1016/j.tate.2013.03.001.

- Desimone, L. M. (2009). Improving impact studies of teachers' professional development: Toward better conceptualizations and measures. *Educational researcher*, 38(3), 181-199. https://doi.org/10.3102/0013189X08331140.
- Devuyst, D. (2000). Linking impact assessment and sustainable development at the local level: the introduction of sustainability assessment systems. *Sustainable development*, 8(2), 67-78. https://doi.org/10.1002/(SICI)1099-1719(200005)8:2%3C67::AID-SD131%3E3.0.CO;2-X.
- Dewey, J. (1933). How We Think: A Ristatement of the Relation of Reflective Thinking Yo the Educative Process. Boston, MA: DC Heath and Company.
- Dewey, J. (1986, September). Experience and education. In *The educational forum* (Vol. 50, No. 3, pp. 241-252). Taylor & Francis Group.
- Ding, D. K., & Beh, S. E. (2022). Climate Change and Sustainability in ASEAN Countries. *Sustainability*, 14(2), 1-17. https://doi.org/10.3390/su14020999.
- Dunlosky, J., Rawson, K. A., Marsh, E. J., Nathan, M. J., & Willingham, D. T. (2013). Improving students' learning with effective learning techniques: Promising directions from cognitive and educational psychology. *Psychological Science in the Public interest*, 14(1), 4-58. https://doi.org/10.1177/1529100612453266.
- Durmuşçelebi, M. (2015). The effectiveness of the teacher training program. *Pegem Journal of Education and Instruction*, 5(5), 747-766. https://doi.org/10.14527/pegegog.2015.041.
- Durrani, R., ur Rahman, F., & Anjum, S. (2021). Perceptions of Teacher Educators about Integration of (ESD) in Elementary Teachers Education Program. *Journal of Development and Social Sciences*, 2(4), 215-225. http://doi.org/10.47205/jdss.2021(2-IV)18.
- Eggert, R. J. (2005). *Engineering design*. Upper Saddle River: Pearson/Prentice Hall
- Eilam, E., & Trop, T. (2010). ESD pedagogy: A guide for the perplexed. *The Journal of Environmental Education*, 42(1), 43-64. https://doi.org/10.1080/00958961003674665.
- Ekselsa, R. A., Purwianingsih, W., Anggraeni, S., & Wicaksono, A. G. C. (2023). Developing System Thinking Skills through Project-Based Learning Loaded with Education for Sustainable Development. *Journal of Biological Education Indonesia (Jurnal Pendidikan Biologi Indonesia)*, 9(1), 62-73. https://doi.org/10.22219/jpbi.v9i1.24261.
- Eliyawati, Widodo, A., Kaniawati, I., & Fujii, H. (2022). Education for Sustainable Deevelopment (ESD in Students' Textbooks. *Journal of Engineering Science and Technologi, 17*(Spesial Issue), 50-57.
- Eliyawati, E., Widodo, A., Kaniawati, I., & Fujii, H. (2023a). The Development and Validation of an Instrument for Assessing Science Teacher Competency to Teach ESD. *Sustainability*, *15*(4), 3276. doi:https://doi.org/10.3390/su15043276
- Eliyawati, E., Widodo, A., Kaniawati, I., & Fujii, H. (2023b). The Effectiveness of Teacher Training on Environmental Education: Challenges and Strategy for Future Training Program. *Jurnal Penelitian Pendidikan IPA*, *9*(8), 6056-6066. https://doi.org/10.29303/jppipa.v9i8.3153.

- Eliyawati, E., Widodo, A., Kaniawati, I., & Fujii, H. (2023c). Merancang Program Pelatihan Guru Yang Dapat Mengembangkan Kompetensi Guru IPA Dalam Mengajarkan ESD. In Proceeding Seminar Nasional IPA. Semarang. UNNES.
- Eliyawati, E., Widodo, A., Kaniawati, I., & Fujii, H. (2025). A Decade of Teacher Training Trends on Education for Sustainable Development (ESD): A Systematic Literature Network Analysis. *EASE Letters*, 4(1), 270-285.
- Endo, Y., & Yamamoto, Y. (2020). Competencies and Capability Development for Science Teacher Training in Japan. *SEAMEO Journal*, *1*, 27-38.
- Eris, O. (2004). Effective inquiry for innovative engineering design (Vol. 10). New York: Springer Science & Business Media.
- Evans, N., Whitehouse, H., & Hickey, R. (2012). Pre-service teachers' conceptions of education for sustainability. *Australian Journal of Teacher Education* (Online), 37(7), 1-12.
- Evans, P., Vansteenkiste, M., Parker, P., Kingsford-Smith, A., & Zhou, S. (2024). Cognitive load theory and its relationships with motivation: A self-determination theory perspective. *Educational Psychology Review*, *36*(1), 7.https://doi.org/10.1007/s10648-023-09841-2.
- Evertson, C. M., & Weinstein, C. S. (2006). *Handbook of classroom management*. *Research, practice, and contemporary issues*. New York: Routledge.
- FAO. (2010). "Climate-Smart" Agriculture: Policies, Practices and Financing for Food Security, Adaption and Mitigation. Rome: Food and Agriculture Organization of the United Nations.
- Farrell, T. S. (2015). *Reflective language teaching: From research to practice*. London and New York: Bloomsbury Publishing.
- Feder, M., Pearson, G., & Katehi, L. (2009). *Engineering in K-12 education: Understanding the status and improving the prospects*. Washington DC: National Academies Press.
- Felder, R. M., & Brent, R. (2005). Understanding student differences. *Journal of engineering education*, 94(1), 57-72. https://doi.org/10.1002/j.2168-9830.2005.tb00829.x.
- Ferreira, J.-A., Evans, N., Davis, J. M., Stevenson, R., & Evans, N. (2019). Teacher education and education for sustainability. *Learning to embed sustainability in teacher education*, 7-21. https://doi.org/10.1007/978-981-13-9536-9 2.
- Ferreira, J. A., Ryan, L., & Tilbury, D. (2006). Whole-school approaches to sustainability: A review of models for professional development in preservice teacher education. Sydney: Australian Research Institute in Education for Sustainability (ARIES) for the Australian Government Department of the Environment, Water, Heritage and the Arts.
- Ferreira, J. A., Ryan, L., & Tilbury, D. (2007). Mainstreaming education for sustainable development in initial teacher education in Australia: A review of existing professional development models. *Journal of Education for Teaching*, 33(2), 225-239. https://doi.org/10.1080/02607470701259515.
- Fien, J., & Corcoran, P. B. (1996). Learning for a Sustainable Environment: professional development and teacher education in environmental education

- in the Asia-Pacific region. *Environmental Education Research*, 2(2), 227-236. https://doi.org/10.1080/1350462960020208.
- Fischer, G. H., Molenaar, I. W., & Baker, F. B. (1996). Rasch models: Foundations, recent developments, and applications. *Psychometrika*, 61(4), 697-700.
- Florian, L., & Black-Hawkins, K. (2011). Exploring inclusive pedagogy. *British educational research journal*, 37(5), 813-828. https://doi.org/10.1080/01411926.2010.501096.
- Forsler, A., Nilsson, P., & Walan, S. (2024). Capturing and Developing Teachers' Pedagogical Content Knowledge in Sustainable Development Using Content Representation and Video-Based Reflection. *Research in science education*, 54(3), 393-412. https://doi.org/10.1007/s11165-023-10149-y.
- Fosnot, C. T., & Perry, R. S. (1996). Constructivism: A Psychological Theory of Learning. In C. T. Fosnot (Ed.), Constructivism: Theory, Perspectives, and Practice (pp. 8-33, 2nd ed.). New York: Teachers College Press.
- Friedrichsen, P., Driel, J. H. V., & Abell, S. K. (2011). Taking a closer look at science teaching orientations. *Science Education*, 95(2), 358-376. https://doi.org/10.1002/sce.20428.
- Frisk, E., & Larson, K. L. (2011). Educating for sustainability: Competencies & practices for transformative action. *Journal of Sustainability Education*, 2(1), 1-20.
- Fullan, M. (2016). *The new meaning of educational change*. London and New York : Teachers college press.
- Furco, A., & Moely, B. E. (2012). Using learning communities to build faculty support for pedagogical innovation: A multi-campus study. *The Journal of Higher Education*, 83(1), 128-153. https://doi.org/10.1080/00221546.2012.11777237.
- Gagne, R. M. (1985). *The Conditions of Learning and Theory of Instruction*. Fort Worth: Holt, Reinehart and Winston.
- Garet, M. S., Porter, A. C., Desimone, L., Birman, B. F., & Yoon, K. S. (2001). What makes professional development effective? Results from a national sample of teachers. *American educational research journal*, 38(4), 915-945. https://doi.org/10.3102/00028312038004915
- Gasparatos, A., & Scolobig, A. (2012). Choosing the most appropriate sustainability assessment tool. *Ecological Economics*, 80, 1-7. https://doi.org/10.1016/j.ecolecon.2012.05.005.
- Gess-Newsome, J. (1999). Pedagogical content knowledge: An introduction and orientation. In *Examining pedagogical content knowledge: The construct and its implications for science education* (pp. 3-17). Dordrecht: Springer Netherlands.
- Giauque, D., Anderfuhren-Biget, S., & Varone, F. (2013). HRM practices, intrinsic motivators, and organizational performance in the public sector. *Public Personnel Management*, 42(2), 123-150. https://doi.org/10.1177/0091026013487121.
- Gibbs, G. (1988). Learning by doing: A guide to teaching and learning methods. Oxford: Further Education Unit.

- Girvan, C., Conneely, C., & Tangney, B. (2016). Extending experiential learning in teacher professional development. *Teaching and Teacher Education*, *58*, 129-139. https://doi.org/10.1016/j.tate.2016.04.009.
- Glaser, R., Chudowsky, N., & Pellegrino, J. W. (2001). *Knowing what students know:* The science and design of educational assessment. Washington DC: National Academies Press.
- Glavič, P. (2020). Identifying key issues of education for sustainable development. *Sustainability, 12*(16), 6500. https://doi.org/10.3390/su12166500
- Gleason, B. L., Peeters, M. J., Resman-Targoff, B. H., Karr, S., McBane, S., Kelley, K., Denetclaw, T. H. (2011). An active-learning strategies primer for achieving ability-based educational outcomes. *American journal of pharmaceutical education*, 75(9), 186. https://doi.org/10.5688/ajpe759186
- Gnansounou, E., Alves, C. M., & Raman, J. K. (2017). Multiple applications of vetiver grass—a review. *International Journal of Education and Learning Systems*, 2.
- Gough, S. (2002). Increasing the value of the environment: A'real options' metaphor for learning. *Environmental Education Research*, 8(1), 61-72. https://doi.org/10.1080/13504620120109664.
- Grossman, P. L. (1990). The making of a teacher: Teacher knowledge and teacher education. *Teachers College*, 185. Columbia University: Teachers College Press, Teachers College.
- Grzywacz, J. G., & Carlson, D. S. (2007). Conceptualizing work—family balance: Implications for practice and research. *Advances in developing human resources*, 9(4), 455-471. https://doi.org/10.1177/1523422307305487.
- Gudmundsdottir, S., & Shulman, L. (1987). Pedagogical Content Knowledge in Social Studies. *Scandinavian Journal of Educational Research*, *31*(2), 59-70. https://doi.org/10.1080/0031383870310201
- Guisasola, J., Ceberio, M., & Zubimendi, J. L. (2006). University students' strategies for constructing hypothesis when tackling paper-and-pencil tasks in physics. *Research in science education, 36*, 163-186. https://doi.org/10.1007/s11165-005-9000-7
- Guo, C., Huang, Y., & Chen, X. (2024). Research on Integration of the Sustainable Development Goals and Teaching Practices in a Future Teacher Science Education Course. *Sustainability*, 16(12), 4982. https://doi.org/10.3390/su16124982.
- Guskey, T. R. (2002). Professional development and teacher change. *Teachers and teaching*, 8(3), 381-391. https://doi.org/10.1080/135406002100000512.
- Haddow, G., & Haddow, K. S. (2013). *Disaster communications in a changing media* world. United States of America: Butterworth-Heinemann.
- Hargreaves, A. (2000). Mixed emotions: Teachers' perceptions of their interactions with students. *Teaching and Teacher Education*, 16(8), 811-826. https://doi.org/10.1016/S0742-051X(00)00028-7.
- Hargreaves, A., & Fullan, M. (2015). *Professional capital: Transforming teaching in every school*. New York and London: Teachers College Press.
- Harlen, W. (2013). Inquiry-based learning in science and mathematics. *Review of science, mathematics and ICT education*, 7(2), 9-33.

- Harlen, W., & Holroyd, C. (1997). Primary teachers' understanding of concepts of science: Impact on confidence and teaching. *International Journal of Science Education*, 19(1), 93-105. https://doi.org/10.1080/0950069970190107.
- Harris, J. B., & Hofer, M. J. (2011). Technological pedagogical content knowledge (TPACK) in action: A descriptive study of secondary teachers' curriculum-based, technology-related instructional planning. *Journal of Research on Technology in Education*, 43(3), 211-229. https://doi.org/10.1080/15391523.2011.10782570.
- Hattie, J. (2008). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. London and New York: Routledge.
- Hattie, J., & Timperley, H. (2007). The power of feedback. *Review of educational research*, 77(1), 81-112. https://doi.org/10.3102/003465430298487.
- Heba, E.-D. (2011). Education for sustainable development: Experiences from action research with science teachers. https://doi.org/10.2478/v10230-012-0002-1.
- Henderson, K., & Tilbury, D. (2005). Whole-school approaches to sustainability: An international review of whole-school sustainability program. Report Prepared by the Australian Research Institute in Education for Sustainability (ARIES) for The Department of the Environment and Heritage, Australian Government.
- Heritage, M. (2021). Formative assessment: Making it happen in the classroom. United States of America: Corwin Press.
- Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty-first century. *Science Education*, 88(1), 28-54. https://doi.org/10.1002/sce.10106.
- Huang, R. X., Pagano, A., & Marengo, A. (2024). Values-Based Education for Sustainable Development (VbESD): Introducing a Pedagogical Framework for Education for Sustainable Development (ESD) Using a Values-Based Education (VbE) Approach. *Sustainability*, 16(9), 3562. https://doi.org/10.3390/su16093562
- Imara, K., & Altinay, F. (2021). Integrating education for sustainable development competencies in teacher education. *Sustainability*, 13(22), 12555. https://doi.org/10.3390/su132212555.
- Indrašienė, V., Jegelevičienė, V., Merfeldaitė, O., Penkauskienė, D., Pivorienė, J., Railienė, A., & Sadauskas, J. (2023). Critical reflection in students' critical thinking teaching and learning experiences. *Sustainability*, *15*(18), 13500. https://doi.org/10.3390/su151813500.
- Ingersoll, R., Merrill, L., & May, H. (2016). Do accountability policies push teachers out? *Educational Leadership*, 73(551), 44-49. Retrieved from https://repository.upenn.edu/handle/20.500.14332/35328.
- Isac, M. M., Sass, W., Pauw, J. B.-d., De Maeyer, S., Schelfhout, W., Van Petegem, P., & Claes, E. (2022). Differences in teachers' professional action competence in education for sustainable development: The importance of teacher co-learning. *Sustainability*, 14(2), 767. https://doi.org/10.3390/su14020767.

- Iwuanyanwu, P. N. (2019). What We Teach in Science, and What Learners Learn: A Gap That Needs Bridging. *Online Submission*, *4*(2). Retrieved April 22, 2022 from https://eric.ed.gov/?id=ED595111.
- Jenkins, J. M., & Veal, M. L. (2002). Preservice teachers' PCK development during peer coaching. *Journal of teaching in physical education*, 22(1), 49-68. https://doi.org/10.1123/jtpe.22.1.49.
- Jickling, B., & Sterling, S. (2017). *Post-sustainability and environmental education:* Framing issues. United Kingdom: Springer.
- Jickling, B., & Wals, A. E. (2008). Globalization and environmental education: Looking beyond sustainable development. *Journal of curriculum studies*, 40(1), 1-21. https://doi.org/10.1080/00220270701684667.
- Jo, H.-K. (2002). Impacts of urban greenspace on offsetting carbon emissions for middle Korea. *Journal of environmental management*, 64(2), 115-126. https://doi.org/10.1006/jema.2001.0491.
- Jonassen, D. H. (2000). Toward a design theory of problem solving. *Educational technology research and development*, 48(4), 63-85. https://doi.org/10.1007/BF02300500.
- Jonassen, D. H., & Rohrer-Murphy, L. (1999). Activity theory as a framework for designing constructivist learning environments. *Educational technology research and development*, 47(1), 61-79. https://doi.org/10.1007/BF02299477.
- Joseph, C., & Said, R. (2019a). Student Engagement: Catalyst to Achieve the Sustainable Development Goal. *Quality Education. Encyclopedia of the UN Sustainable Development Goals; Leal Filho, W., Azul, A., Brandli, L., Özuyar, P., Wall, T., Eds*, 812-820. https://doi.org/10.1007/978-3-319-95870-5 71.
- Joseph, C., & Said, R. (2019b). Student engagement: Catalyst to achieve the sustainable development goal. *Quality Education. Encyclopedia of the UN Sustainable Development Goals*, 812-820. https://doi.org/10.1007/978-3-319-95870-5 71.
- Joyce, B. R., & Showers, B. (2002). Student achievement through staff development (Vol. 3): Alexandria, VA: Association for Supervision and Curriculum Development.
- Kang, N.-H., Kang, H., Maeng, S., Park, J., & Jeong, E. (2020). Teacher competency in competency-focused science teaching in the South Korean context: Teacher self-assessment instrument development and application. *Asia-Pacific Science Education*, 6(2), 480-513.
- Karaarslan, G., & Teksöz, G. (2016). Integrating Sustainable Development Concept into Science Education Program Is Not Enough; We Need Competent Science Teachers for Education for Sustainable Development--Turkish Experience. *International Journal of Environmental and Science Education*, 11(15), 8403-8425.
- Kasi, Y. F., Widodo, A., Samsudin, A., & Riandi, R. (2022). The benefits of Teacher Professional Development (TPD) program based on partnership, technology, and ethnoscience approach to improving the TPACK of science teachers.

- *Pedagonal: Jurnal Ilmiah Pendidikan,* 6(2), 228-237. https://doi.org/10.55215/pedagonal.v6i2.5756.
- Keller, M. M., Hoy, A. W., Goetz, T., & Frenzel, A. C. (2016). Teacher enthusiasm: Reviewing and redefining a complex construct. *Educational Psychology Review*, 28, 743-769. https://doi.org/10.1007/s10648-015-9354-y.
- Kemendikbudristek. (2021). Panduan Umum UKMPPG. Jakarta: Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi.
- Kemper, J. (2021). Stimulating collective transformative learning experiences with an ESD whole-school assessment tool. *Glocality*, 4(1). https://doi.org/10.5334/glo.48.
- Kennedy, A. (2014). Understanding continuing professional development: The need for theory to impact on policy and practice. *Professional development in education*, 40(5), 688-697. https://doi.org/10.1080/19415257.2014.955122.
- Kennedy, M. M. (2016). How does professional development improve teaching? *Review of educational research*, 86(4), 945-980. https://doi.org/10.3102/0034654315626800.
- Khuman, A. S. (2018). Fostering inclusivity through dynamic teaching practices. In *Higher Education Computer Science: A Manual of Practical Approaches* (pp. 147-160). Cham: Springer International Publishing.
- Kilinc, A., & Aydin, A. (2013). Turkish student science teachers' conceptions of sustainable development: A phenomenography. *International Journal of Science Education*, 35(5), 731-752. https://doi.org/10.1080/09500693.2011.574822.
- Kind, V. (2009). Pedagogical content knowledge in science education: perspectives and potential for progress. *Studies in Science Education*, 45(2), 169-204.https://doi.org/10.1080/03057260903142285.
- Kini, T., & Podolsky, A. (2016). Does Teaching Experience Increase Teacher Effectiveness? A Review of the Research. *Learning Policy Institute*. Retrieved from https://eric.ed.gov/?id=ED606426
- Klassen, R. M., Perry, N. E., & Frenzel, A. C. (2012). Teachers' relatedness with students: An underemphasized component of teachers' basic psychological needs. *Journal of educational psychology*, 104(1), 150. https://psycnet.apa.org/doi/10.1037/a0026253.
- Kleine, A., & Von Hauff, M. (2009). Sustainability-driven implementation of corporate social responsibility: Application of the integrative sustainability triangle. *Journal of Business Ethics*, 85, 517-533. https://doi.org/10.1007/s10551-009-0212-z
- Koehler, M., Mishra, P., & Cain, W. (2013). What is technological pedagogical content knowledge (TPACK)? *Journal of Education*. https://doi.org/10.1177/002205741319300303
- Kolb, D. A. (2014). Experiential learning: Experience as the source of learning and development. United States of America: Person.
- Kolodner, J. L., Camp, P. J., Crismond, D., Fasse, B., Gray, J., Holbrook, J., Ryan, M. (2003). Problem-based learning meets case-based reasoning in the middle-school science classroom: Putting learning by design (tm) into

- practice. *The journal of the learning sciences, 12*(4), 495-547. https://doi.org/10.1207/S15327809JLS1204 2.
- Lai, Y.-C., & Peng, L.-H. (2019). Effective teaching and activities of excellent teachers for the sustainable development of higher design education. *Sustainability*, 12(1), 28. https://doi.org/10.3390/su12010028.
- Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. *science*, *304*(5677), 1623-1627.
- Larrivee, B. (2000). Transforming teaching practice: Becoming the critically reflective teacher. *Reflective practice*, *1*(3), 293-307. https://doi.org/10.1080/713693162.
- Laurie, R., Nonoyama-Tarumi, Y., Mckeown, R., & Hopkins, C. (2016). Contributions of education for sustainable development (ESD) to quality education: A synthesis of research. *Journal of Education for Sustainable development*, 10(2), 226-242. https://doi.org/10.1177/0973408216661442.
- Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. United Kingdom: Cambridge university press.
- Leal Filho, W., Sigahi, T. F., Anholon, R., Rebelatto, B. G., Schmidt-Ross, I., Hensel-Börner, S., Brandli, L. L. (2025). Promoting sustainable development via stakeholder engagement in higher education. *Environmental Sciences Europe*, *37*(1), 1-20. https://doi.org/10.1186/s12302-025-01101-0.
- Lee, E., & Luft, J. A. (2008). Experienced secondary science teachers' representation of pedagogical content knowledge. *International Journal of Science Education*, 30(10), 1343-1363. https://doi.org/10.1080/09500690802187058.
- Lee, H., Chang, H., Choi, K., Kim, S.-W., & Zeidler, D. L. (2012). Developing character and values for global citizens: Analysis of pre-service science teachers' moral reasoning on socioscientific issues. *International Journal of Science Education*, 34(6), 925-953. https://doi.org/10.1080/09500693.2011.625505.
- Leicht, A., Heiss, J., & Byun, W. J. (2018). *Issues and trends in education for sustainable development* (Vol. 5). Paris: UNESCO publishing.
- Leithwood, K., & Beatty, B. (2007). *Leading with teacher emotions in mind*. United States of America: Corwin Press.
- Leithwood, K., & Jantzi, D. (2006). Transformational school leadership for large-scale reform: Effects on students, teachers, and their classroom practices. *School effectiveness and school improvement*, 17(2), 201-227. https://doi.org/10.1080/09243450600565829.
- Lewis, C., Perry, R., & Murata, A. (2006). How should research contribute to instructional improvement? The case of lesson study. *Educational researcher*, 35(3), 3-14. https://doi.org/10.3102/0013189X035003003.
- Lieberman, A., & Miller, L. (2008). *Teachers in professional communities: Improving teaching and learning*. New York: Teachers College Press.
- Lieberman, A., & Miller, L. (2014). Teachers as professionals: Evolving definitions of staff development. *Handbook of professional development in education*, 3(1), 67-71.

- Loewenberg Ball, D., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? *Journal of teacher education*, *59*(5), 389-407. https://doi.org/10.1177/0022487108324554.
- Lomas, L., & Kinchin, I. (2006). Developing a peer observation program with university teachers. *International journal of teaching and learning in higher education*, 18(3), 204-214.
- Loughran, J. (2013). Developing a pedagogy of teacher education: Understanding teaching & learning about teaching. London: Routledge.
- Loughran, J., Berry, A., & Mulhall, P. (2012). *Understanding and developing scienceteachers' pedagogical content knowledge* (Vol. 12). Rotterdam: Sense Publishers.
- Loughran, J. J. (2002). Effective reflective practice: In search of meaning in learning about teaching. *Journal of teacher education*, 53(1), 33-43. https://doi.org/10.1177/0022487102053001004.
- Luft, J. A., Roehrig, G. H., & Patterson, N. C. (2002). Barriers and pathways: A reflection on the implementation of an induction program for secondary science teachers. *School Science and Mathematics*, 102(5), 222-228. https://doi.org/10.1111/j.1949-8594.2002.tb18145.x
- Manni, A., Ottander, C., Sporre, K., & Parchmann, I. (2013). Perceived learning experiences regarding education for sustainable development—within Swedish outdoor education traditions. *Nordic Studies in Science Education*, *9*(2), 187-205. https://doi.org/10.5617/nordina.653.
- Manni, A., Sporre, K., & Ottander, C. (2013). Mapping what young students understand and value regarding the issue of sustainable development. *International Electronic Journal of Environmental Education*, 3(1), 17-35.
- Manzano Vázquez, B. (2017). Teacher education for autonomy: A study of modern language student teachers' professional development. Universidad de Granada.
- Marshall, J. C., & Horton, R. M. (2011). The relationship of teacher-facilitated, inquiry-based instruction to student higher-order thinking. *School Science and Mathematics*, 111(3), 93-101. https://doi.org/10.1111/j.1949-8594.2010.00066.x.
- Marzano, R. J., Pickering, D., & Pollock, J. E. (2001). Classroom instruction that works: Research-based strategies for increasing student achievement. Alexandria, Virginia: Ascd.
- Masten, A. S., & Obradovic, J. (2008). Disaster preparation and recovery: Lessons from research on resilience in human development. *Ecology and society,* 13(1).
- Mat Said, A., Ahmadun, F. l. R., Hj. Paim, L., & Masud, J. (2003). Environmental concerns, knowledge and practices gap among Malaysian teachers. *International journal of sustainability in higher education*, 4(4), 305-313. https://doi.org/10.1108/14676370310497534.
- Mayer, R. E. (2005). *The Cambridge handbook of multimedia learning*. New York: Cambridge university press.

- Mezirow, J. (2000). Learning as Transformation: Critical Perspectives on a Theory in Progress. The Jossey-Bass Higher and Adult Education Series. San Frasisco: Jossey-Base Publisher.
- Mezza, A. (2022). Reinforcing and innovating teacher professionalism: Learning from other professions. *OECD Education Working Papers*, (276), 0_1-49. https://doi.org/10.1787/117a675c-en
- Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. *Teachers college record*, 108(6), 1017-1054. https://doi.org/10.1111/j.1467-9620.2006.00684.x.
- Mochizuki, Y., & Bryan, A. (2015). Climate change education in the context of education for sustainable development: Rationale and principles. *Journal of Education for Sustainable development*, 9(1), 4-26. https://doi.org/10.1177/0973408215569109.
- Mogensen, F., & Schnack, K. (2010). The action competence approach and the 'new' discourses of education for sustainable development, competence and quality criteria. *Environmental Education Research*, 16(1), 59-74. https://doi.org/10.1080/13504620903504032.
- Mogk, D. W., & Goodwin, C. (2012). Learning in the field: Synthesis of research on thinking and learning in the geosciences. https://doi.org/10.1130/2012.2486(24)
- Mogren, A., & Gericke, N. (2017). ESD implementation at the school organisation level, part 2–investigating the transformative perspective in school leaders' quality strategies at ESD schools. *Environmental Education Research*, 23(7), 993-1014. https://doi.org/10.1080/13504622.2016.1226266.
- Mogren, A., Gericke, N., & Scherp, H.-Å. (2019). Whole school approaches to education for sustainable development: A model that links to school improvement. *Environmental Education Research*, 25(4), 508-531.https://doi.org/10.1080/13504622.2018.1455074
- Moon, J. A. (2013). *A handbook of reflective and experiential learning: Theory and practice*. London and New York: Routledge.
- Morrell, P., Rogers, M., Pyle, E., Roehrig, G., & Veal, W. (2020). NSTA/ASTE standards for science teacher preparation. *National Science Teaching Association: Arlington, VA, USA*.
- Mulà, I., Tilbury, D., Ryan, A., Mader, M., Dlouhá, J., Mader, C., Alba, D. (2017). Catalysing change in higher education for sustainable development: A review of professional development initiatives for university educators. *International journal of sustainability in higher education*, 18(5), 798-820. https://doi.org/10.1108/IJSHE-03-2017-0043.
- Murphy, C., Mallon, B., Smith, G., Kelly, O., Pitsia, V., & Martinez Sainz, G. (2021). The influence of a teachers' professional development programme on primary school pupils' understanding of and attitudes towards sustainability. *Environmental Education Research*, 27(7), 1011-1036. https://doi.org/10.1080/13504622.2021.1889470.
- Navarrete, C., Saldías, G., Carbonetti, M., Fierro, J., & Sandoval, D. (2020). *Towards a Sustainable Model of Higher Education in the Araucania Region, Chile.*

- Paper presented at the IOP Conference Series: Earth and Environmental Science.
- Niemi, H. (2002). Active learning—a cultural change needed in teacher education and schools. *Teaching and Teacher Education*, 18(7), 763-780. https://doi.org/10.1016/S0742-051X(02)00042-2.
- Niemiec, C. P., & Ryan, R. M. (2009). Autonomy, competence, and relatedness in the classroom: Applying self-determination theory to educational practice. *Theory and research in Education*, 7(2), 133-144. https://doi.org/10.1177/1477878509104318.
- Niiranen, S., Ikonen, P., Rissanen, T., & Rasinen, A. (2020). Development of teacher education students' pedagogical content knowledge (PCK) through reflection and a learning-by-doing approach in craft and technology education. *Design and Technology Education: An International Journal*, 25(3).
- Nilsson, P. (2014). When teaching makes a difference: Developing science teachers' pedagogical content knowledge through learning study. *International Journal of Science Education*, 36(11), 1794-1814. https://doi.org/10.1080/09500693.2013.879621
- Nolet, V. (2015). *Educating for sustainability: Principles and practices for teachers*. New York: Routledge.
- Nouri, N., Saberi, M., McComas, W. F., & Mohammadi, M. (2021). Proposed teacher competencies to support effective nature of science instruction: A metasynthesis of the literature. *Journal of Science Teacher Education*, 32(6), 601-624. https://doi.org/10.1080/1046560X.2020.1871206.
- O'Brien, C. (2016). *Education for sustainable happiness and well-being*. New York : Routledge.
- O'Sullivan, E. (2002). The project and vision of transformative education: Integral transformative learning. In *Expanding the boundaries of transformative learning: Essays on theory and praxis* (pp. 1-12). New York: Palgrave Macmillan US.
- Odell, V., Molthan-Hill, P., Martin, S., & Sterling, S. (2020). Transformative education to address all sustainable development goals. In *Quality education* (pp. 905-916). Cham: Springer International Publishing.
- Oe, H., Yamaoka, Y., & Ochiai, H. (2022). A qualitative assessment of community learning initiatives for environmental awareness and behaviour change: Applying UNESCO education for sustainable development (ESD) framework. *International Journal of Environmental Research and Public Health*, 19(6), 3528. https://doi.org/10.3390/ijerph19063528.
- Oh, P. S. (2010). How can teachers help students formulate scientific hypotheses? Some strategies found in abductive inquiry activities of earth science. *International Journal of Science Education*, 32(4), 541-560. https://doi.org/10.1080/09500690903104457.
- Öhman, J. (2008). Values and democracy in education for sustainable development: contributions from Swedish research. Liber.
- Okayama_University_ESD_Promotion_Center. (2020). Guide for the effective dissemination of the Asia-Pacific ESD teacher competency framework. In: Okayama University Okayama, Japan.

- Olsson, D., Gericke, N., & Boeve-de Pauw, J. (2022). The effectiveness of education for sustainable development revisited—a longitudinal study on secondary students' action competence for sustainability. *Environmental Education Research*, 28(3), 405-429. https://doi.org/10.1080/13504622.2022.2033170.
- Olsson, D., Gericke, N., & Chang Rundgren, S.-N. (2016). The effect of implementation of education for sustainable development in Swedish compulsory schools—assessing pupils' sustainability consciousness. *Environmental Education Research*, 22(2), 176-202. https://doi.org/10.1080/13504622.2015.1005057.
- Opfer, V. D., & Pedder, D. (2011). Conceptualizing teacher professional learning. *Review of educational research*, 81(3), 376-407. https://doi.org/10.3102/0034654311413609.
- Osman, A., Ladhani, S., Findlater, E., & McKay, V. (2017). Curriculum framework for the sustainable development goals. *Commonwealth Secretariat*.
- Ostrom, E. (1990). Governing the commons: The evolution of institutions for collective action. New York: Cambridge university press.
- Oyasu, K. (2019). Community based learning for Sustainable Development. *Kultur:* revista interdisciplinària sobre la cultura de la ciutat, 6(11), 39-62.
- Pakaya, P., Lihawa, F., & Baderan, D. W. K. (2024). Efektivitas Ruang Terbuka Hijau Publik dalam Menyerap Emisi Karbon Dioksida untuk Mendukung Keberlanjutan Lingkungan Perkotaan. *Hidroponik: Jurnal Ilmu Pertanian Dan Teknologi Dalam Ilmu Tanaman*, 1(3), 54-75. https://doi.org/10.62951/hidroponik.v1i3.199.
- Palomino, M., Burgos-García, A., & Martinez-Valdivia, E. (2021). What does education for sustainable development offer in initial teacher training? A systematic review. *Journal of Teacher Education for Sustainability*, 23(1), 99-114.
- Pamuk, S., Elmas, R., & Saban, Y. (2022). A modeling study on science teachers' sustainable development knowledge, attitudes and practices. *Sustainability*, 14(16), 10437. https://doi.org/10.3390/su141610437.
- Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Canadell, J. G. (2011). A large and persistent carbon sink in the world's forests. *science*, 333(6045), 988-993.
- Park, S., & Oliver, J. S. (2008). Revisiting the conceptualisation of pedagogical content knowledge (PCK): PCK as a conceptual tool to understand teachers as professionals. *Research in science education*, 38, 261-284.
- Patall, E. A., Cooper, H., & Wynn, S. R. (2010). The effectiveness and relative importance of choice in the classroom. *Journal of educational psychology*, 102(4), 896.
- Patrick, B. C., Hisley, J., & Kempler, T. (2000). "What's everybody so excited about?": The effects of teacher enthusiasm on student intrinsic motivation and vitality. *The Journal of experimental education*, 68(3), 217-236. https://doi.org/10.1080/00220970009600093.
- Pauw, J. B., Gericke, N., Olsson, D., & Berglund, T. (2015). The effectiveness of education for sustainable development. *Sustainability*, 7(11), 1-25. https://doi.org/10.3390/su71115693.

- Pedaste, M., Mäeots, M., Siiman, L. A., De Jong, T., Van Riesen, S. A., Kamp, E. T., Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. *Educational research review*, 14, 47-61. https://doi.org/10.1016/j.edurev.2015.02.003.
- Peedikayil, J. V., Vijayan, V., & Kaliappan, T. (2023). Teachers' attitude towards education for sustainable development: A descriptive research. *Int J Eval & Res Educ ISSN*, 2252(8822), 8822. https://doi.org/10.11591/ijere.v12i1.23019.
- Peng, Y., Ahmad, S. F., Irshad, M., Al-Razgan, M., Ali, Y. A., & Awwad, E. M. (2023). Impact of digitalization on process optimization and decision-making towards sustainability: The moderating role of environmental regulation. *Sustainability*, *15*(20), 15156. https://doi.org/10.3390/su152015156.
- Penuel, W. R., Fishman, B. J., Yamaguchi, R., & Gallagher, L. P. (2007). What makes professional development effective? Strategies that foster curriculum implementation. *American educational research journal*, 44(4), 921-958. https://doi.org/10.3102/0002831207308221.
- Postholm, M. B. (2012). Teachers' professional development: A theoretical review. *Educational research*, 54(4), 405-429. https://doi.org/10.1080/00131881.2012.734725.
- Potkonjak, V., Gardner, M., Callaghan, V., Mattila, P., Guetl, C., Petrović, V. M., & Jovanović, K. (2016). Virtual laboratories for education in science, technology, and engineering: A review. *Computers & Education*, 95, 309-327. https://doi.org/10.1016/j.compedu.2016.02.002.
- Pradana, S., Subali, B., Antony, M., Hapsari, N., & Astuti, F. (2019). *The TPACK Analysis of High School Biology Teachers in Sragen Regency, Central Java Based on Teacher Certification Status.* Paper presented at the Journal of Physics: Conference Series.
- Prasad, A., & Mogla, R. (2016). *Environmental education: Component of sustainable development*. Paper presented at the 2016 IEEE Region 10 Humanitarian Technology Conference (R10-HTC).
- Pretty, J., & Smith, D. (2004). Social capital in biodiversity conservation and management. *Conservation biology*, 18(3), 631-638. https://doi.org/10.1111/j.1523-1739.2004.00126.x
- Prince, M. J., & Felder, R. M. (2006). Inductive teaching and learning methods: Definitions, comparisons, and research bases. *Journal of engineering education*, 95(2), 123-138. https://doi.org/10.1002/j.2168-9830.2006.tb00884.x.
- Punzalan, C. H., & Balanac, M. L. M. (2020). Students' participation in tree planting activity: Promoting the 21st century environmental education. *The Journal of Sustainability Education*.
- Purwianingsih, W., & Mardiyah, A. (2018). Analysis of pedagogical content knowledge (PCK) ability of science teachers in planning and reflecting on environmental pollution content. Paper presented at the Journal of Physics: Conference Series.

- Quintas, S., Ferreira, R. T., & Oliveira, H. (2015). The Teaching of Measures of Variability at Secondary Level: Examining Two Teachers' PCK. *Into Knowledge: New Opportunities for Statistics Education*, 131.
- Ragan, T. J., & Smith, P. L. (2013). Conditions theory and models for designing instruction. In *Handbook of research on educational communications and technology* (pp. 620-646). Routledge.
- Rahman, F. (2024). Quantifying Soil Organic Carbon Storage in Vetiver Planted Soil. Jackson State University,
- Rauch, F., & Steiner, R. (2013). Competences for education for sustainable development in teacher education. *CEPS journal*, 3(1), 9-24.
- Redman, E., & Larson, K. (2011). Educating for sustainability: Competencies & practices for transformative action. *Journal of Sustainability Education*, 2(1), 1-20.
- Richardson, P. W., & Watt, H. M. (2006). Who chooses teaching and why? Profiling characteristics and motivations across three Australian universities. *Asia-Pacific Journal of Teacher Education*, 34(1), 27-56. https://doi.org/10.1080/13598660500480290.
- Richmond, W. K. (1971). *The School Curriculum (1st Edition)*. London: Routledge. Richter, C. H., Xu, J., & Wilcox, B. A. (2015). Opportunities and challenges of the ecosystem approach. *Futures*, *67*, 40-51.https://doi.org/10.1016/j.futures.2014.12.002.
- Rieckmann, M. (2012). Future-oriented higher education: Which key competencies should be fostered through university teaching and learning? *Futures*, 44(2), 127-135. https://doi.org/10.1016/j.futures.2011.09.005.
- Rieckmann, M. (2017). *Education for sustainable development goals: Learning objectives*. Paris: UNESCO publishing.
- Rieckmann, M. (2018). Learning to transform the world: Key competencies in Education for Sustainable Development. *Issues and trends in education for sustainable development*, 39(1), 39-59.
- Rochintaniawati, D., Widodo, A., Riandi, R., & Herlina, L. (2018). Pedagogical content knowledge depelopment of science prospective teachers in professional practice program. *unnes science education journal*, 7(2).
- Rock, T. C., & Wilson, C. (2005). Improving teaching through lesson study. *Teacher education quarterly*, 32(1), 77-92.
- Rodríguez Aboytes, J. G., & Barth, M. (2020). Transformative learning in the field of sustainability: a systematic literature review (1999-2019). *International Journal of Sustainability in higher education*, 21(5), 993-1013.
- Rollnick, M., Bennett, J., Rhemtula, M., Dharsey, N., & Ndlovu, T. (2008). The place of subject matter knowledge in pedagogical content knowledge: A case study of South African teachers teaching the amount of substance and chemical equilibrium. *International Journal of Science Education*, 30(10), 1365-1387.
- Rollnick, M., Davidowitz, B., & Potgieter, M. (2017). *Is topic-specific PCK unique to teachers?* Paper presented at the Cognitive and affective aspects in science education research: Selected papers from the ESERA 2015 Conference.

- Ropo, E. (1987). Teachers' Conceptions of Teaching and Teaching Behavior: Some Differences between Expert and Novice Teachers. Retrieved from https://eric.ed.gov/?id=ED287824.
- Ross, M., Van Dusen, B., & Otero, V. (2014). Becoming agents of change through participation in a teacher-driven professional research community. *arXiv* preprint arXiv:1408.2502. https://doi.org/10.48550/arXiv.1408.2502.
- Roth, G., Assor, A., Kanat-Maymon, Y., & Kaplan, H. (2007). Autonomous motivation for teaching: how self-determined teaching may lead to self-determined learning. *Journal of educational psychology*, *99*(4), 761.https://psycnet.apa.org/doi/10.1037/0022-0663.99.4.761.
- Rubini, B., Ardianto, D., & Pursitasari, I. D. (2019). *Teachers' perception regarding integrated science learning and science literacy*. Paper presented at the 3rd Asian Education Symposium (AES 2018).
- Rulandari, N. (2021). Study of sustainable development goals (SDGS) quality education in Indonesia in the first three years. *Budapest International Research and Critics Institute (BIRCI-Journal): Humanities and Social Sciences*, 4(2), 2702-2708.
- Runhaar, P., Sanders, K., & Yang, H. (2010). Stimulating teachers' reflection and feedback asking: An interplay of self-efficacy, learning goal orientation, and transformational leadership. *Teaching and Teacher Education*, 26(5), 1154-1161. https://doi.org/10.1016/j.tate.2010.02.011.
- Russell, T., McPherson, S., & Martin, A. K. (2001). Coherence and collaboration in teacher education reform. *Canadian Journal of Education/Revue canadienne de l'education*, 37-55.
- Rustaman, N. Y. (2004). Asesmen Pendidikan IPA. Bandung: Nusa Media.
- Ryan, R. M., & Deci, E. L. (2000a). Intrinsic and extrinsic motivations: Classic definitions and new directions. *Contemporary educational psychology*, 25(1), 54-67. https://doi.org/10.1006/ceps.1999.1020.
- Ryan, R. M., & Deci, E. L. (2000b). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. *American psychologist*, 55(1), 68.
- Sachs, J. D. (2015). *The age of sustainable development*. New York: Columbia University Press.
- Saito, E., Harun, I., Kuboki, I., & Tachibana, H. (2006). Indonesian lesson study in practice: Case study of Indonesian mathematics and science teacher education project. *Journal of in-service education*, 32(2), 171-184. https://doi.org/10.1080/13674580600650872.
- Saleem, A., & Dare, P. S. (2023). Unmasking the action-oriented ESD approach to acting environmentally friendly. *Sustainability*, 15(2), 1675. https://doi.org/10.3390/su15021675.
- Sandholtz, J. H., Ringstaff, C., & Matlen, B. (2016). Temporary fix or lasting solution? Investigating the longitudinal impact of teacher professional development on K–2 science instruction. *The elementary school journal*, 117(2), 192-215.

- Santos, I., & Carvalho, A. A. (2017). Training and Monitoring: a two-stage training model in teacher professional development. *Educação & Realidade, 42*, 323-344. https://doi.org/10.1590/2175-623655298.
- Scharlemann, J. P., Brock, R. C., Balfour, N., Brown, C., Burgess, N. D., Guth, M. K., Wicander, S. (2020). Towards understanding interactions between Sustainable Development Goals: The role of environment–human linkages. *Sustainability science*, *15*, 1573-1584.
- Scheuch, M., Keller, E., Radits, F., & Pass, G. (2010). Building a Biology In-Service-Teacher Training Model for Development of PCK. Neue Wege in der Professionalisierung von Lehrer/-inne/-n. New Pathways in the Professional Development of Teachers, 307-311.
- Schon, D. (2017). *The Reflective Practitioner: How Professionals Think in Action Basic Books Inc.* London: Routledge.
- Schönstein, R. F., & Budke, A. (2024). *Teaching action competence in education for sustainable development—a qualitative study on teachers' ideas, opinions, attitudes and self-conceptions*. Paper presented at the Frontiers in Education. https://doi.org/10.3389/feduc.2023.1256849.
- Schraw, G., Crippen, K. J., & Hartley, K. (2006). Promoting self-regulation in science education: Metacognition as part of a broader perspective on learning. *Research in science education*, *36*, 111-139.
- Schultz, P. W. (2011). Conservation means behavior. *Conservation biology*, 25(6), 1080-1083. Retrieved from https://www.jstor.org/stable/41315395.
- Sharaai, A. H. (2021). Teacher training as a means to instil sustainable environmental behaviour among future teachers: A systematic literature review.
- Shein, P. P., & Tsai, C.-Y. (2015). Impact of a scientist–teacher collaborative model on students, teachers, and scientists. *International Journal of Science Education*, 37(13), 2147-2169. https://doi.org/10.1080/09500693.2015.1068465.
- Shepard, L. (2000). The role of assessment in a learning culture. Education Researcher, 29 (7), 4-14. https://doi.org/10.3102/0013189X029007004.
- Shephard, K. (2008). Higher education for sustainability: seeking affective learning outcomes. *International Journal of Sustainability in higher education*, *9*(1), 87-98. https://doi.org/10.1108/14676370810842201.
- Shephard, K., Harraway, J., Lovelock, B., Mirosa, M., Skeaff, S., Slooten, L., Deaker, L. (2015). Seeking learning outcomes appropriate for 'education for sustainable development'and for higher education. *Assessment & evaluation in higher education*, 40(6), 855-866. https://doi.org/10.1080/02602938.2015.1009871.
- Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. *Harvard educational review, 57*(1), 1-23.
- Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. *Educational researcher, 15*(2), 4-14.
- Shumba, O., & Kampamba, R. (2013). Mainstreaming ESD into science teacher education courses: A case for ESD pedagogical content knowledge and learning as connection. Southern African Journal of Environmental Education, 151-166.

- Shute, V., & Towle, B. (2018). Adaptive e-learning. In *Aptitude* (pp. 105-114). New York: Routledge.
- Simasiku, F. S. (2020). The contributions of education for sustainable development (ESD) to quality education: an action research project on the implementation of fieldwork in die school geography curriculum. Stellenbosch: Stellenbosch University,
- Sims, L., & Falkenberg, T. (2013). Developing competencies for Education for Sustainable Development: A Case study of Canadian faculties of education. *International Journal of Higher Education*, 2(4), 1-14.
- Sims, L., & Walsh, D. (2009). Lesson study with preservice teachers: Lessons from lessons. *Teaching and Teacher Education*, 25(5), 724-733. https://doi.org/10.1016/j.tate.2008.10.005.
- Sinakou, E., Boeve-de Pauw, J., & Van Petegem, P. (2019). Exploring the concept of sustainable development within education for sustainable development: implications for ESD research and practice. *Environment, development and sustainability*, 21(1), 1-10.
- Sinakou, E., Donche, V., & Petegem, P. V. (2022). Action-orientation in education for sustainable development: Teachers' interests and instructional practices. *Journal of Cleaner Production*, 370(133469). https://doi.org/10.1016/j.jclepro.2022.133469.
- Singh-Pillay, A. (2020). Pre-service technology teachers' experiences of project based learning as pedagogy for education for sustainable development. *Universal Journal of Educational Research*, 8(5), 1935-1943. https://doi.org/10.13189/ujer.2020.080530.
- Sipos, Y., Battisti, B., & Grimm, K. (2008). Achieving transformative sustainability learning: engaging head, hands and heart. *International Journal of Sustainability in higher education*, 9(1), 68-86. https://doi.org/10.1108/14676370810842193.
- Siregar, S. U. (2018). *The Development of Teacher Quality Assurance Model After Certification*. Paper presented at the 3rd Annual International Seminar on Transformative Education and Educational Leadership (AISTEEL 2018). https://doi.org/10.2991/aisteel-18.2018.54
- Sjöström, J., Frerichs, N., Zuin, V. G., & Eilks, I. (2017). Use of the concept of Bildung in the international science education literature, its potential, and implications for teaching and learning. *Studies in science education*, 53(2), 165-192. https://doi.org/10.1080/03057267.2017.1384649.
- Sleurs, W. (2008). Competencies for ESD (Education for Sustainable Development) teachers: A framework to integrate ESD in the curriculum of teacher training institutes-Comenius 2.1 project 118277-CP-1-2004-BE-Comenius-C2. 1. *American psychologist*, 53(4), 449-455.
- Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., Rice, C. (2008). Greenhouse gas mitigation in agriculture. *Philosophical transactions of the royal Society B: Biological Sciences*, 363(1492), 789-813. https://doi.org/10.1098/rstb.2007.2184.
- Soko, I., Setiawan, A., & Widodo, A. (2017). Development of a cultural-based physics learning module for teacher education and training program to

- enhance teacher pedagogical content knowledge. Paper presented at the Proceeding of 4th International Conference on Research, Implementation and Education of Mathematics and Science (ICRIEMS).
- Sterling, S. (2004). Higher education, sustainability, and the role of systemic learning. In *Higher education and the challenge of sustainability: Problematics, promise, and practice* (pp. 49-70). Dordrecht: Springer Netherlands.
- Sterling, S. (2011). Transformative learning and sustainability: Sketching the conceptual ground. *Learning and teaching in higher education*, 5(11), 17-33.
- Sterling, S., & Orr, D. (2001). Sustainable education: Re-visioning learning and change (Vol. 6). Totnes: Green Books for the Schumacher Society.
- Stevenson, R. B., Lasen, M., Ferreira, J.-A., & Davis, J. (2017). Approaches to embedding sustainability in teacher education: A synthesis of the literature. *Teaching and teacher education*, 63, 405-417. https://doi.org/10.1016/j.tate.2017.01.013.
- Sulphey, M. (2019). The present and future of education for sustainable development: a fact sheet. *International Journal of Environment, Workplace and Employment,* 5(3), 220-234. https://doi.org/10.1504/IJEWE.2019.103393.
- Summers, M., & Childs, A. (2007). Student science teachers' conceptions of sustainable development: An empirical study of three postgraduate training cohorts. *Research in Science & Technological Education*, 25(3), 307-327. https://doi.org/10.1080/02635140701535067.
- Summers, M., Childs, A., & Corney, G. (2005). Education for sustainable development in initial teacher training: Issues for interdisciplinary collaboration. *Environmental Education Research*, 11(5), 623-647. https://doi.org/10.1080/13504620500169841.
- Summers, M., Corney, G., & Childs, A. (2004). Student teachers' conceptions of sustainable development: the starting-points of geographers and scientists. *Educational* research, 46(2), 163-182. https://doi.org/10.1080/0013188042000222449.
- Sund, P., & Lysgaard, J. G. (2013). Reclaim "education" in environmental and sustainability education research. *Sustainability*, 5(4), 1598-1616. https://doi.org/10.3390/su5041598.
- Sunthonkanokpong, W., & Murphy, E. (2019). Quality, equity, inclusion and lifelong learning in pre-service teacher education. *Journal of Teacher Education for Sustainability*, 21(2), 91-104. https://doi.org/10.2478/jtes-2019-0019
- Syh-Jong, J., & Hsiu-Chuan, S. (2009). Developing In-Service Science Teachers' PCK Through A Peer Coaching-Based Model. *Journal of Education Research*, 3.
- Takahashi, A., & McDougal, T. (2016). Collaborative lesson research: Maximizing the impact of lesson study. *ZDM*, 48, 513-526. https://doi.org/10.1007/s11858-015-0752-x
- Tan, A.-L. (2018). Journey of science teacher education in Singapore: past, present and future. *Asia-Pacific Science Education*, 4(1), 1-16. https://doi.org/10.1186/s41029-017-0018-8

- Tidball, K. G., & Krasny, M. E. (2011). Toward an ecology of environmental education and learning. *Ecosphere*, 2(2), 1-17. https://doi.org/10.1890/ES10-00153.1.
- Tilbury, D. (2011). Education for sustainable development: An expert review of processes and learning. Retrieved from https://unesdoc.unesco.org/ark:/48223/pf0000191442.
- Tilbury, D., & Wortman, D. (2004). *Engaging people in sustainability*. Cambridge: IUCN.
- Tims, M., Bakker, A. B., & Derks, D. (2013). The impact of job crafting on job demands, job resources, and well-being. *Journal of occupational health psychology*, 18(2), 230. https://psycnet.apa.org/doi/10.1037/a0032141.
- Timur, S., Timur, B., & Karakas, A. (2014). Investigating pre-service teachers' knowledge and behaviors toward environment. *The Anthropologist*, 17(1), 25-35.
- Tomlinson, C. A. (2001). How to differentiate instruction in mixed-ability classrooms. Alexandria: Ascd.
- Truong, P. N., & Hart, B. (2001). *Vetiver system for wastewater treatment* (p. 26). Bangkok (Thailand): Office of the Royal Development Projects Board.
- Tschannen-Moran, M., & Hoy, A. W. (2001). Teacher efficacy: Capturing an elusive construct. *Teaching and Teacher Education*, 17(7), 783-805. https://doi.org/10.1016/S0742-051X(01)00036-1.
- Uitto, A., Juuti, K., Lavonen, J., & Meisalo, V. (2006). Students' interest in biology and their out-of-school experiences. *Journal of Biological Education*, 40(3), 124-129. https://doi.org/10.1080/00219266.2006.9656029.
- UNESCO. (2011). Education for sustainable development: An expert review of processes and learning. In: UNESCO Paris.
- UNESCO. (2017). Education for Sustainable Development Goals: Learning Objectives: United Nations Educational Scientific and Cultural Organization.
- UNESCO. (2018). Issues and trends in Education for Sustainable Development Issues and trends in Education. Paris, France: UNESCO Publishing.
- UNESCO. (2019). *Teaching and learning transformative engagement*. Paris, France: UNESCO Publishing.
- University_of_York. (2022). *Teacher Standard STEM Learning* National STEM Learning Centre and Network. Retrieved from https://www.stem.org.uk/secondary-science/teachers-standards
- Van Driel, J. H., Beijaard, D., & Verloop, N. (2001). Professional development and reform in science education: The role of teachers' practical knowledge. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 38(2), 137-158. https://doi.org/10.1002/1098-2736(200102)38:2%3C137::AID-TEA1001%3E3.0.CO;2-U.
- Van Driel, J. H., Verloop, N., & De Vos, W. (1998). Developing science teachers' pedagogical content knowledge. *Journal of Research in Science Teaching:* The Official Journal of the National Association for Research in Science Teaching, 35(6), 673-695. https://doi.org/10.1002/(SICI)1098-2736(199808)35:6%3C673::AID-TEA5%3E3.0.CO;2-J.

- Vandewaetere, M., Desmet, P., & Clarebout, G. (2011). The contribution of learner characteristics in the development of computer-based adaptive learning environments. *Computers in Human Behavior*, 27(1), 118-130. https://doi.org/10.1016/j.chb.2010.07.038.
- Vangrieken, K., Grosemans, I., Dochy, F., & Kyndt, E. (2017). Teacher autonomy and collaboration: A paradox? Conceptualising and measuring teachers' autonomy and collaborative attitude. *Teaching and Teacher Education*, 67, 302-315. https://doi.org/10.1016/j.tate.2017.06.021.
- Vare, P., Arro, G., de Hamer, A., Del Gobbo, G., de Vries, G., Farioli, F., Millican, R. (2019). Devising a competence-based training program for educators of sustainable development: Lessons learned. *Sustainability*, 11(7), 1890. https://doi.org/10.3390/su11071890.
- Vare, P., & Scott, W. (2007). Learning for a change: Exploring the relationship between education and sustainable development. *Journal of Education for Sustainable development*, 1(2), 191-198. https://doi.org/10.1177/097340820700100209.
- Varela-Losada, M. (2018). Environmental Education for sustainability in initial teacher training in Infant and Primary Education. *Environmental Education Research*, 24(3), 476-477. https://doi.org/10.1080/13504622.2016.1269876.
- Varela-Losada, M., Pérez-Rodríguez, U., Lorenzo-Rial, M. A., & Vega-Marcote, P. (2022). *In search of transformative learning for sustainable development: Bibliometric analysis of recent scientific production.* Paper presented at the Frontiers in Education. https://doi.org/10.3389/feduc.2022.786560.
- Varela-Losada, M., Vega-Marcote, P., Lorenzo-Rial, M., & Pérez-Rodríguez, U. (2021). The challenge of global environmental change: Attitudinal trends in teachers-in-training. *Sustainability*, *13*(2), 493. https://doi.org/10.3390/su13020493.
- Vásquez Ortiz, C., Garcia Alonso, I., Seckel, M. J., & Alsina, A. (2021). Education for Sustainable Development in Primary Education Textbooks-An Educational Approach from Statistical and Probabilistic Literacy. https://doi.org/10.3390/su13063115.
- Verma, G. (2009). The influence of university coursework on pre-service middle and high school teachers' experiences with multicultural themes. *Journal of Science Teacher Education*, 20(4), 313-332. https://doi.org/10.1007/s10972-009-9124-0.
- Vermunt, J. D., & Verloop, N. (1999). Congruence and friction between learning and teaching. *Learning and instruction*, 9(3), 257-280. https://doi.org/10.1016/S0959-4752(98)00028-0.
- Vescio, V., Ross, D., & Adams, A. (2008). A review of research on the impact of professional learning communities on teaching practice and student learning. *Teaching and Teacher Education*, 24(1), 80-91. https://doi.org/10.1016/j.tate.2007.01.004.
- Vorsah, R. E., & Oppong, F. Sustainable Professional Development Programs: Preparing Science Educators to Teach Environmental Issues Effectively. *International Journal of Engineerinf Technology Research and Management*, 08(11), 214-228.

- Voydanoff, P. (2005). Work demands and work-to-family and family-to-work conflict: Direct and indirect relationships. *Journal of family issues*, 26(6), 707-726. https://doi.org/10.1177/0192513X05277516.
- Vygotsky, L. S. (1978). *Mind in society: The development of higher psychological processes* (Vol. 86). United States: Harvard university press.
- Wals, A. E. (2011). Learning our way to sustainability. *Journal of Education for Sustainable development*, 5(2), 177-186. https://doi.org/10.1177/097340821100500208.
- Wals, A. E. (2015). Beyond unreasonable doubt. Education and learning for socioecological sustainability in the Anthropocene. Wageningen University. Retrieved from https://research.wur.nl/en/publications/beyondunreasonable-doubt-education-and-learning-for-socio-ecolog.
- Wals, A. E. (2023). Social learning towards a sustainable world: Principles, perspectives, and praxis. Wageningan (Netherlands): Wageningan Academic Publishers.
- Wals, A. E., & Corcoran, P. B. (2023). *Learning for sustainability in times of accelerating change*. Wageningan (Netherlands): Wageningan Academic Publishers.
- Wals, A. E., & Jickling, B. (2002). "Sustainability" in higher education: From doublethink and newspeak to critical thinking and meaningful learning. *International journal of sustainability in higher education*, *3*(3), 221-232. https://doi.org/10.1108/14676370210434688.
- Wals, A. E., & Kieft, G. (2010). Education for sustainable development: Research overview. Retrieved from https://research.wur.nl/en/publications/education-for-sustainable-development-research-overview.
- Walshe, N. (2013). Exploring and developing student understandings of sustainable development. *The Curriculum Journal*, 24(2), 224-249. doi:10.1080/09585176.2013.781388
- Wang, M. C., Haertel, G. D., & Walberg, H. J. (1993). Toward a knowledge base for school learning. *Review of educational research*, 63(3), 249-294. https://doi.org/10.3102/00346543063003249.
- Wardani, E. N., Drajati, N. A., & Handayani, E. I. P. (2020). Pre-service teacher experience in designing lesson using TPACK-21 Cl in teaching reading for high school students. *EDULANGUE*, *3*(1), 29-48. https://doi.org/10.20414/edulangue.v3i1.2094.
- Wenger, E. (1999). *Communities of practice: Learning, meaning, and identity*. Cambridge: Cambridge university press.
- Widodo, A. (2014). Peningkatan Kemampuan Mengajar Guru-guru SD melalui Lesson Study. In: Online),(http://jurnal. upi. edu/file/Jurnal Aril. pdf).
- Widodo, A. (2017). Teacher pedagogical content knowledge (PCK) and students' reasoning and wellbeing. In *journal of physics: Conference series* (Vol. 812, No. 1, p. 012119). IOP Publishing.
- Widodo, A. (2021). *Pembelajaran Ilmu Penegtahuan Alam Dasar-Dasar Untuk Praktik*. Bandung: UPI Press.
- Widodo, A., & Kaniawati, I. (2024). Developing Indonesian Preservice Science Teachers' Understanding of Education for Sustainable Development (ESD)

- Through Integrated Courses. In *Science Education for Sustainable Development in Asia* (pp. 285-300). Singapore : Springer Nature Singapore.
- Widodo, A., & Riandi. (2013). Dual-mode teacher professional development: challenges and re-visioning future TPD in Indonesia. *Teacher development*, 17(3), 380-392. https://doi.org/10.1080/13664530.2013.813757.
- Widodo, A., Rochintaniawati, D., & Riandi, R. (2017). *Primary School Teachers' Understanding of Essential Science Concepts*. Yogyakarta State University.
- Wiek, A., Withycombe, L., & Redman, C. L. (2011). Key competencies in sustainability: a reference framework for academic program development. *Sustainability science*, 6, 203-218. https://doi.org/10.1007/s11625-011-0132-6.
- Williams, R., & Grudnoff, L. (2011). Making sense of reflection: A comparison of beginning and experienced teachers' perceptions of reflection for practice. *Reflective practice*, 12(3), 281-291. https://doi.org/10.1080/14623943.2011.571861.
- Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. *Science education*, 92(5), 941-967. https://doi.org/10.1002/sce.20259.
- Woodcock, J., Edwards, P., Tonne, C., Armstrong, B. G., Ashiru, O., Banister, D., Cohen, A. (2009). Public health benefits of strategies to reduce greenhousegas emissions: urban land transport. *The Lancet*, *374*(9705), 1930-1943.
- Yanti, M., & Suhandi, A. (2020). Pedagogical content knowledge (PCK) of science teachers based on content representation (CoRe). In *Journal of Physics: Conference Series* (Vol. 1521, No. 4, p. 042119). IOP Publishing.
- Yue, X., & Ji, R. (2020). Teacher professional competencies in education for sustainable development. In *Sustainable Organizations-Models, Applications, and New Perspectives*, 163. IntechOpen.
- Zeichner, K. M. (2003). Teacher research as professional development for P-12 educators in the USA [1]. *Educational action research*, 11(2), 301-326. https://doi.org/10.1080/09650790300200211.
- Zeichner, K. M., & Liston, D. P. (2013). *Reflective teaching: An introduction*. New York: Routledge.
- Zhao, Y., Liu, X., & Han, X. (2024). Enhancing pro-environmental behavior through nature-contact environmental education: an empirical analysis based on randomized controlled experiment design. *Frontiers in Environmental Science*, 12, 1491780. https://doi.org/10.3389/fenvs.2024.1491780.