BAB III

METODE PENELITIAN

3.1 Objek dan Subjek Penelitian

Objek yang diteliti pada penelitian ini adalah pertumbuhan ekonomi (Y) sebagai variabel dependen, sementara pertumbuhan penduduk (X1), rasio ketergantungan (X2), tingkat partisipasi angkatan kerja (X3), pertumbuhan rata-rata lama sekolah (X4), dan pertumbuhan pembentukan modal tetap bruto (X5) sebagai variabel independen. Adapun yang menjadi subjek penelitian ini adalah 34 provinsi di Indonesia selama periode 2015-2024.

3.2 Metode Penelitian

Penelitian ini menggunakan metode kuantitatif eksplanatori yang bertujuan untuk mengetahui hubungan antar variabel melalui pengukuran numerik untuk mengidentifikasi pola, hubungan, atau fenomena secara objektif. Analisis data pada penelitian ini akan menggunakan teknik analisis data panel dinamis yaitu *Generalized Method of Moments* (GMM).

3.3 Desain Penelitian

3.3.1 Definisi Operasional Variabel

Variabel yang akan diteliti pada penelitian ini akan dijelaskan melalui definisi operasional variabel pada Tabel 3.1 berikut.

Tabel 3.1 Definisi Operasional Variabel

Variabel	Konsep	Definisi	Sumber	Jenis	
		Operasional	Data	Data	
Variabel Dependen					
Pertumbuhan	Pertumbuhan	PE diukur melalui	Badan	Rasio	
Ekonomi (Y)	ekonomi (PE)	perubahan produk	Pusat		
	merupakan proses	domestik regional	Statistik		
	peningkatan	bruto per-kapita (Y _{pc})			
	kapasitas produksi	untuk mencerminkan			

Variabel	Konsep	Definisi	Sumber	Jenis
		Operasional	Data	Data
	secara terus menerus	kesejahteraan		
	dan berkelanjutan	penduduk. Berikut		
	dengan	adalah rumusnya:		
	menghasilkan	$PE_t =$		
	peningkatan	$\frac{Y_{pc,t} - Y_{pc,t-1}}{Y_{nc,t-1}} \times 100\%$		
	pendapatan dan			
	output nasional			
	(Todaro & Smith,			
	2012).			
	Variabel I	ndependen		
Pertumbuhan	Pertumbuhan	Laju pertumbuhan	Badan	Rasio
Penduduk (X1)	penduduk	penduduk (POP)	Pusat	
	merupakan	diukur melalui rata-	Statistik	
	pertambahan	rata pertumbuhan		
	jumlah penduduk	penduduk tahunan		
	antar waktu	antar dua periode		
	(Rahayu, 2011).	sensus serta metode		
		geometrik. Berikut		
		adalah rumusnya:		
		•		
		$\Delta POP = \left(\frac{P_t}{P_0}\right)^{\frac{1}{t}} - 1$		
Rasio	Rasio	RK diukur dengan	Badan	Rasio
Ketergantungan	ketergantungan	membandingkan	Pusat	
(X2)	(RK) merupakan	penduduk usia	Statistik	
	perbandingan	produktif (P ₁₅₋₆₄)		
	antara penduduk	dengan penduduk		
	usia produktif	usia non-produktif		
	dengan penduduk	(P ₀₋₁₄ , dan P ₆₅₊).		
	-	(1 0-14, uaii 1 65+ <i>j</i> .		
	usia non-produktif			

Variabel	Konsep	Definisi	Sumber	Jenis
		Operasional	Data	Data
	(Todaro & Smith,	Berikut adalah		
	2012).	rumusnya:		
		RK =		
		$\frac{P_{15-64}}{P_{0-14} + P_{65+}} \times 100\%$		
Tingkat	Tingkat partisipasi	TPAK diukur	Badan	Rasio
Partisipasi	angkatan kerja	dengan	Pusat	
Angkatan Kerja	(TPAK)	membandingkan	Statistik	
(X3)	merupakan	jumlah angkatan		
	penduduk usia	kerja (AK)		
	kerja yang aktif	terhadap penduduk		
	secara ekonomi	usia produktif (P ₁₅₋		
	disebut dengan	64). Berikut adalah		
	angkatan kerja,	rumusnya:		
	terdiri dari pekerja	TPAK =		
	dan pengangguran	$\frac{AK}{P_{15-64}} \times 100\%$		
	(Borjas, 2016).	13-04		
Rata-rata Lama	Rata-rata lama	RLS dihitung	Badan	Rasio
Sekolah (X4)	sekolah (RLS)	dengan	Pusat	
	adalah jumlah	menjumlahkan	Statistik	
	durasi pendidikan	seluruh proporsi		
	yang diselesaikan	penduduk		
	oleh penduduk	berdasarkan lama		
	suatu negara yang	sekolahnya.		
	berusia 25 tahun	Berikut adalah		
	ke atas, tidak	rumusnya:		
	termasuk	$RLS = \sum_{l} HS_{l} \times YS_{l}$		
	mengulang kelas	1		
	(UNESCO, 2013).			

Variabel	Konsep	Definisi	Sumber	Jenis
		Operasional	Data	Data
Pertumbuhan	Pembentukan	Pertumbuhan	Badan	Rasio
Pembentukan	modal tetap bruto	PMTB diukur	Pusat	
Modal Tetap	(PMTB) atau	melalui perubahan	Statistik	
Bruto (X5)	investasi	modal tetap bruto		
	merupakan jumlah	tahunan setiap		
	pengeluaran untuk	provinsi. Berikut		
	membeli aset yang	adalah rumusnya:		
	digunakan untuk	$\Delta PMTB =$		
	produksi barang	$\frac{PMTB_t - PMTB_{t-1}}{PMTB_{t-1}}$		
	(OECD, 2025).	× 100%		
	PMTB juga			
	termasuk			
	pengeluaran pada			
	bangunan,			
	infrastruktur, dan			
	aset tetap lain yang			
	menunjang proses			
	produksi.			

3.3.2 Metode Pengumpulan Data

Seluruh data yang digunakan pada penelitian ini bersumber dari Badan Pusat Statistik. Berikut adalah rincian metode pengumpulan data dari setiap variabel:

- Pertumbuhan ekonomi menggunakan data [Seri 2010] Produk Domestik Regional Bruto Per Kapita (Ribu Rupiah) dari tahun 2015-2024 (BPS, 2025a).
- 2) Pertumbuhan penduduk menggunakan data Penduduk, Laju Pertumbuhan Penduduk, Distribusi Persentase Penduduk, Kepadatan Penduduk, Rasio

- Jenis Kelamin Penduduk Menurut Provinsi dari tahun 2015-2024 (BPS, 2025b).
- 3) Rasio ketergantungan menggunakan data *Dependency Ratio* Hasil Proyeksi Penduduk dari tahun 2015, 2020, dan 2025 (BPS, 2019). Data yang tidak tersedia seperti tahun 2016-2019 dan 2021-2024 diisi dengan metode interpolasi dari data yang tersedia.
- 4) Tingkat partisipasi angkatan kerja menggunakan data Persentase Angkatan Kerja Terhadap Penduduk Usia Kerja (TPAK) menurut Provinsi (Persen) dari tahun 2015-2024 (BPS, 2025c).
- 5) Pertumbuhan rata-rata lama sekolah menggunakan data [Metode Baru] Rata-rata Lama Sekolah (Tahun) dari tahun 2015-2024 yang diolah menjadi data pertumbuhan (BPS, 2024).
- 6) Pertumbuhan pembentukan modal tetap bruto menggunakan data [SERI 2010] 2. PDRB Atas Dasar Harga Konstan Menurut Pengeluaran (2010=100) (Milyar Rupiah) dari tahun 2015-2024 yang diolah menjadi data pertumbuhan (BPS, 2025d).

3.3.3 Teknik Analisis Data

3.3.3.1 Generalized Method of Moments

Generalized Method of Moments (GMM) merupakan teknik estimasi yang digunakan pada data panel yang bersifat dinamis dengan memanfaatkan informasi dari momen populasi, seperti rata-rata, varians, dan korelasi, sehingga hasil estimasi cenderung konsisten, walaupun terdapat masalah seperti heteroskedastisitas dan autokorelasi. Hal tersebut dapat menangani masalah hasil estimasi yang bias dan inkonsisten pada estimator Ordinary Least Square (OLS). Pada penelitian ini, estimator GMM digunakan untuk menganalisis hubungan pertumbuhan penduduk, rasio ketergantungan, tingkat partisipasi angkatan kerja, pertumbuhan rata-rata lama sekolah, dan pertumbuhan pembentukan modal tetap bruto, dengan pertumbuhan ekonomi di Indonesia.

Terdapat dua metode estimasi yang umum digunakan dalam teknik GMM, di antaranya:

1) First-difference GMM

First-difference GMM merupakan salah satu estimator GMM yang digunakan dalam analisis data panel dinamis serta dirancang untuk mengatasi masalah endogenitas yang muncul akibat adanya *unobserved individual effects* serta kemungkinan korelasi antara variabel independen dengan residual (Arellano & Bond, 1991).

$$y_{it} = \alpha y_{i(t-1)} + X_{it}\beta + \mu_i + \nu_{it}$$
 (P3.1)

Persamaan P3.1 merupakan model dasar dari *first-difference* GMM di mana y_{it} merupakan variabel dependen, $y_{i(t-1)}$ merupakan lag dari variabel dependen, X_{it} merupakan matriks variabel independen, μ_i merupakan efek individual yang tidak teramati, dan ν_{it} merupakan *error* term.

Dalam mengatasi efek individual (μ_i), maka P3.1 akan dibuatkan persamaan dalam bentuk *first-difference* yang akan dijelaskan pada persamaan P3.2 berikut:

$$\Delta y_{it} = \alpha \Delta y_{i(t-1)} + \Delta X_{it} \beta + \Delta v_{it}$$
 (P3.2)

Akan tetapi $\Delta y_{i(t-1)}$ berpotensi terjadi korelasi dengan Δv_{it} sehingga diperlukan instrumen yang valid. Arellano dan Bond (1991) mencetuskan penggunaan lag dari variabel dependen pada level sebagai instrumen, seperti $y_{i(t-2)}$ dan seterusnya. Hal tersebut karena variabel dependen diasumsikan tidak berkorelasi dengan *error term* yang terdiferensiasi.

$$E[y_{i(t-2)} . \Delta v_{it}] = 0 (P3.3)$$

Persamaan P3.3 merupakan *moment restriction*. Dalam mengestimasi parameter, *First-difference* GMM akan menggunakan estimator GMM dua tahap yaitu uji validitas instrumen dan uji autokorelasi.

2) System-GMM

System GMM merupakan pengembangan dari *first-difference* GMM untuk mengatasi masalah instrumen lemah yang sering terjadi pada data panel dinamis ketika variabel dependen memiliki derajat persistensi yang tinggi (Blundell & Bond, 1998). Pada persamaan P3.2, Blundell dan Bond menemukan masalah di mana $y_{i(t-1)}$ sangat persisten, yang membuat *lag* dari variabel pada level menjadi instrumen yang lemah. Hal tersebut menghasilkan estimasi yang bias dan tidak efisien.

Estimasi yang bias dan tidak efisien dapat diatasi dengan menggunakan dua jenis instrumen yaitu *lag* variabel dalam level pada *first-difference* GMM dan *lag* pertama dari variabel yang terdiferensiasi digunakan sebagai instrumen tambahan untuk persamaan dalam level. Kedua instrumen akan di estimasi secara simultan, sehingga *moment restriction* pada GMM akan menjadi seperti pada persamaan P3.4 dan P3.5 berikut:

$$E[y_{i(t-s)} . \Delta v_{it}] = 0, s \ge 2$$
 (P3.4)

$$E[\Delta y_{i(t-1)} . \Delta v_{it}] = 0 \tag{P3.5}$$

Pada persamaan P3.4, *lag* variabel dependen pada level tidak berkorelasi dengan residual pada *first difference*, sehingga instrumen menjadi valid. Sedangkan pada persamaan P3.5, perubahan variabel dependen tidak berkorelasi dengan residual, sehingga variabel dependen pada *first difference* dapat digunakan sebagai instrumen.

3.3.3.2 Spesifikasi Model Ekonometrika

Berdasarkan pendapat ahli dan penelitian terdahulu, pertumbuhan penduduk (POP, population growth) mempengaruhi pertumbuhan ekonomi (Y) dan menjadi indikator dari fenomena transisi demografi.

$$Y_{it} = \alpha_1 Y_{it-1} + \alpha_2 POP_{it} + \varepsilon_{it}$$
(P3.6)

 Y_{it-1} merupakan lag dari variabel dependen sebagai dasar model GMM.

Akan tetapi kaum netral berpendapat bahwa pertumbuhan penduduk akan mempengaruhi pertumbuhan ekonomi jika disertai variabel lainnya. Pada persamaan P3.7 ditambahkan variabel lain yang berpotensi mempengaruhi pertumbuhan ekonomi, khususnya selama bonus demografi.

$$Y_{it} = \beta_1 Y_{it-1} + \beta_2 POP_{it} + \beta_3 LFPR_{it} + \beta_4 MYS_{it} + \beta_5 GFCF_{it} + \varepsilon_{it}$$
(P3.7, Model 1)

Di mana LFPR (*labor force participation growth*) merupakan tingkat partisipasi angkatan kerja, lalu MYS (*mean years of schooling*) merupakan rata-rata lama sekolah, dan GFCF (*gross fixed capital formation*) merupakan pertumbuhan pembentukan modal tetap bruto.

Perubahan struktur usia penduduk yang diukur melalui rasio ketergantungan berpotensi mempengaruhi pertumbuhan ekonomi, sehingga pada persamaan P3.8, pertumbuhan penduduk diganti menjadi rasio ketergantungan (DR, *dependency ratio*). Selain itu, rasio ketergantungan menjadi pertanda dari fenonema bonus demografi selama masa transisi demografi.

$$Y_{it} = \gamma_1 Y_{it-1} + \gamma_2 DR_{it} + \gamma_3 LFPR_{it} + \gamma_4 MYS_{it} + \gamma_5 GFCF_{it} + \varepsilon_{it}$$
(P3.8, Model 2)

3.3.3.3 Uji Validitas Instrumen

Identifikasi bahwa model bersifat valid, maka dilakukan pengujian menggunakan *Sargan-test* atau *Hansen-test* untuk menguji *over-identifying restriction* dan memastikan bahwa instrumen tidak berkorelasi dengan *error term* (Roodman, 2009). Apabila $p\text{-value} > \alpha$, maka instrumen valid, serta konsisten. Akan tetapi apabila $p\text{-value} < \alpha$, maka instrumen tidak valid dan menunjukkan adanya inkonsistensi sehingga perlu perbaikan pada model.

3.3.3.4 Uji Autokorelasi

Uji *serial correlation* Arellano-Bond dilakukan untuk mendeteksi autokorelasi pada residual melalui uji AR(1) dan uji AR(2) (Roodman, 2009). GMM mensyaratkan tidak adanya autokorelasi orde dua pada residual yang

terdiferensiasi agar instrumen valid. Sehingga agar model valid, *p-value* pada AR(2) harus lebih besar dari α (0,05).

3.3.3.5 Uji Ketahanan Model

Uji ketahanan model bertujuan untuk memastikan hasil penelitian tidak bergantung pada asumsi model atau definisi dari variabel tertentu. Analisis tersebut penting untuk dilakukan agar dapat mengetahui pengaruh dari batasan pengecualian yang diterapkan dan memastikan hasil penelitian yang telah dilakukan tidak bias sebagai akibat dari pengecualian variabel. Hal tersebut bertujuan untuk memastikan bahwa hasil analisis tidak terdistorsi oleh variabel yang dihilangkan.

Pengujian ini juga bertujuan untuk memastikan hasil estimasi tidak sensitif terhadap perubahan kecil pada spesifikasi model, misalnya dengan penggunaan instrumen yang berbeda atau estimasi model menggunakan data yang berbeda (Lu & White, 2014). Apabila hasil analisis menunjukkan konsistensi dalam berbagai spesifikasi, maka model bersifat *robust* dan hasil analisis dapat dipercaya. Berikut adalah langkah-langkah dalam menguji ketahanan model pada penelitian ini:

- 1) Menambahkan variabel usia harapan hidup yang merupakan salah satu indikator transisi demografi.
- 2) Mengkomparasikan hasil analisis GMM dengan *Fixed Effect Model* dan *Random Effect Model*.