BAB V SIMPULAN DAN SARAN

5.1 Simpulan

Berdasarkan hasil penelitian dan analisis yang telah dilakukan, dapat disimpulkan beberapa poin utama sebagai berikut:

- 1. Penelitian ini berhasil mengembangkan model deteksi objek berbasis citra termal dengan arsitektur CNN yang dilengkapi *residual blocks*, yaitu TRNet-128. Model ini dirancang untuk mendeteksi dua objek utama: manusia dan pengendara sepeda motor pada citra termal *grayscale* beresolusi 128×128 *pixel*.
- 2. Hasil evaluasi menunjukkan bahwa TRNet-128 mampu mencapai akurasi yang sangat tinggi pada data pelatihan dan validasi. Setelah penerapan teknik augmentasi, model berhasil mengatasi permasalahan *overfitting* dan memperoleh akurasi validasi sebesar 99,86% dengan *validation loss* yang sangat rendah.
- 3. Dibandingkan dengan model CNN sederhana, TRNet-128 menunjukkan performa yang lebih unggul pada seluruh metrik evaluasi, termasuk *precision, recall, F1-score, confusion matrix*, dan *mean Average Precision* (mAP). TRNet-128 berhasil mencapai mAP sebesar 0,99977, lebih tinggi dibandingkan CNN sederhana yang hanya mencapai mAP 0,99652.
- 4. Keunggulan TRNet-128 terletak pada integrasi *residual blocks* yang mampu mempertahankan dan memperkaya informasi fitur, sehingga meningkatkan akurasi klasifikasi dan ketepatan deteksi objek pada citra termal. Hal dibuktikan secara kuantitatif pada model TRNet-128 yang memperoleh *accuracy* sebesar 99,93% dibandingkan dengan model CNN sederhana yang hanya meraih *accuracy* 99,29%.
- 5. Secara keseluruhan, penelitian ini menunjukkan bahwa penerapan *residual learning* pada arsitektur CNN secara signifikan meningkatkan performa deteksi objek dalam citra termal, terutama dalam kondisi pencahayaan rendah.

5.2 Saran

Berdasarkan hasil penelitian dan analisis yang diperoleh, beberapa saran yang dapat diajukan untuk penelitian selanjutnya adalah:

- 1. Penggunaan *dataset* dengan variasi lingkungan dan objek yang lebih beragam agar model TRNet-128 dapat beradaptasi lebih baik dalam situasi nyata dan meningkatkan kemampuan generalisasi.
- 2. Penelitian lanjutan dapat mempertimbangkan implementasi *transfer learning* atau *domain adaptation* untuk memperbaiki performa model pada data termal yang lebih kompleks dan tidak seimbang.
- 3. Pengembangan arsitektur lebih lanjut, misalnya dengan menambahkan *mekanisme attention* atau normalisasi adaptif, dapat dieksplorasi untuk meningkatkan kapabilitas representasi spasial dan kontekstual pada citra termal.
- 4. Uji coba pada sistem kendaraan otonom nyata dengan integrasi sensor termal secara langsung untuk memvalidasi hasil yang diperoleh dalam skenario praktis.