BAB III METODE PENELITIAN

3.1 Metode dan Desain Penelitian

Penelitian ini merupakan penelitian eksperimen atau kuantitatif dengan metode *quasi experimental design*. Penelitian kuantitatif adalah pendekatan untuk menguji teori-teori objektif dengan memeriksa hubungan antar variabel. Variabel-variabel tersebut dapat diukur dengan instrumen, sehingga data angka dapat dianalisis dengan menggunakan prosedur statistik (Creswell & Creswell, 2018). Sedangkan metode *quasi experimental design* adalah desain penelitian yang bertujuan untuk memperkirakan dampak kausal dari suatu intervensi atau *treatment* tanpa menggunakan randomisasi penuh (Shadish dkk., 2002). Desain ini sering digunakan ketika randomisasi tidak memungkinkan karena kendala etika atau praktis.

Adapun bentuk quasi experimental design yang digunakan adalah Nonequivalent Pretest-Posttest Group Design. Nonequivalent Pretest-Posttest Group Design adalah desain penelitian yang melibatkan pengukuran kelompok kelas eksperimen yang diberikan treatment dan kelas kontrol yang tidak diberikan treatment. Pada penelitian ini kelas dibagi menjadi dua yaitu kelas kontrol dan kelas eksperimen. Kedua kelas tersebut melaksanakan pretest untuk mengetahui kemampuan awal pemecahan awal peserta didik. Kelas eksperimen diberi treatment berupa penerapan strategi metakognisi OPMER dalam pembelajaran inkuiri terbimbing sedangkan kelas kontrol hanya menggunakan pembelajaran inkuiri terbimbing yang umumnya sudah diterapkan. Selanjutnya, kedua kelompok diberikan posttest untuk mengetahui dampak dari perlakuan yang telah diberikan.

Tabel 3. 1
Pretest-Posttest Group Design

Class	Pretest	Treatment	Posttest
Experiment	O_1	X	O_2
Control	01	-	O_2
			(C11 20

(Cresswell, 2014)

Yesi Puspita Sari, 2025

PENERAPAN STRATEGI METAKOGNISI OPMER DALAM PEMBELAJARAN INKUIRI TERBIMBING TERHADAP KEMAMPUAN PEMECAHAN MASALAH PESERTA DIDIK SMA PADA MATERI GELOMBANG MEKANIK

Keterangan:

0₁ : Pretest kemampuan pemecahan masalah peserta didik

X: treatment penerapan strategi metakognisi OPMER dalam

pembelajaran inkuiri terbimbing

0₂ : Posttest kemampuan pemecahan masalah peserta didik

3.2 Populasi dan Sampel

Populasi merupakan kelompok individu yang menjadi fokus utama dalam penelitian yang mencakup seluruh individu yang memiliki satu atau lebih karakteristik yang relevan dengan masalah penelitian. Sedangkan sampel adalah bagian dari populasi yang dipilih untuk diikutsertakan dalam penelitian dengan tujuan untuk mewakili karakteristik populasi secara keseluruhan (Creswell & Creswell, 2018).

Adapun populasi dalam penelitian ini adalah peserta didik kelas XI di salah satu SMA Kota Bandung yang memilih kelompok mata pelajaran fisika, dalam hal ini totalnya terdapat lima kelas. Sedangkan sampel diambil dengan teknik convenience sampling atau sampel nonprobabilitas berdasarkan ketersediaan dan kemudahan akses tanpa mempertimbangkan karakteristik spesifik tertentu (Creswell & Creswell, 2018). Hal ini ditentukan berdasarkan ketersediaan pihak sekolah dan rekomendasi guru mata pelajaran fisika berkaitan dengan jadwal yang memungkinkan untuk dilakukan penelitan. Maka, berdasarkan teknik tersebut diambil sampel dua kelas dengan satu kelas eksperimen berjumlah 31 perserta didik dan satu kelas kontrol berjumlah 30 peserta didik. Sehingga total sampel penelitian ini adalah 61 peserta didik.

3.3 Instrumen Penelitian

3.3.1 Modul Ajar

Modul ajar seperti yang terlampir pada Lampiran.1 dilengkapi dengan Lembar Kerja Peserta Didik yang terlampir pada Lampiran.2 merupakan salah satu perangkat ajar pada Kurikulum Merdeka untuk memandu pendidik melaksanakan pembelajaran yang berisi tujuan, langkah, media, dan materi pembelajaran, serta asesmen yang dibutuhkan sesuai dengan tujuan pembelajaran. Dalam hal ini, modul ajar yang dibuat adalah modul ajar yang menerapkan strategi metakognisi OPMER dalam

pembelajaran inkuiri terbimbing pada materi gelombang mekanik. Adapun, modul ajar dan LKPD tidak melalui proses validasi formal karena telah dikembangkan dan direvisi secara menyeluruh bersama dosen pembimbing. Fokus utamanya adalah memastikan kesesuaian dengan tujuan pembelajaran dan konteks penelitian. Oleh karena itu, meskipun tidak divalidasi secara resmi, instrumen ini tetap dianggap layak digunakan karena sudah dibangun berdasarkan landasan teori dan pertimbangan praktis yang relevan. Kegiatan pembelajaran disusun dalam tiga pertemuan dengan masing-masing pertemuan memiliki tujuan pembelajaran sebagai berikut:

Tabel 3. 2 Tujuan Pembelajaran Materi Gelombang Mekanik

Pertemuan	Sub Materi	Tujuan Pembelajaran
1	Konsep	Peserta didik dapat menjelaskan konsep
	gelombang	gelombang mekanik secara verbal dan
	mekanik,	melalui pengamatan terhadap suatu
	klasifikasi	fenomena.
	gelombang	Peserta didik dapat menjelaskan konsep
	berdasarkan	gelombang mekanik secara verbal dan
	arah	melalui pengamatan terhadap suatu
	getarnya,	fenomena.
	dan besaran-	Peserta didik dapat membedakan
	besaran	gelombang mekanik dan elektromagnetik
	gelombang	berdasarkan ada atau tidaknya medium
		perambatan.
		Peserta didik dapat menganalisis besaran-
		besaran gelombang mekanik (frekuensi,
		periode, panjang gelombang, amplitudo)
		secara verbal dan matematis.
		Peserta didik dapat menentukan hubungan
		frekuensi dan panjang gelombang
		berdasarkan percobaan virtual.

Pertemuan	Sub Materi	Tujuan Pembelajaran
2	Sifat-sifat	Peserta didik dapat menjelaskan sifat
	gelombang	refleksi dan interferensi pada gelombang
	mekanik	mekanik tali melalui diskusi kelas dan
	pada tali,	pengamatan terhadap suatu fenomena.
	gelombang	Peserta didik dapat menentukan persamaan
	berjalan dan	gelombang berjalan melalui kegiatan
	gelombang	diskusi kelas.
	stasioner	Peserta didik dapat membedakan
		karakteristik gelombang stasioner ujung
		bebas dan ujung terikat.
		Peserta didik dapat menentukan persamaan
		interferensi gelombang stasioner ujung
		tetap dan ujung bebas.
3	Percobaan	Peserta didik dapat melakukan percobaan
	melde	melde untuk menentukan hubungan cepat
		rambat gelombang dengan tegangan tali
		dan rapat massa tali.

3.3.2 Lembar Observasi Keterlaksanaan Pembelajaran

Lembar observasi keterlaksanaan pembelajaran seperti yang terlmpir pada Lampiran.6 dan Lampiran.7 meliputi daftar aktivitas guru dan peserta didik yang digunakan untuk mengukur *treatment* keterlaksanaan model pembelajaran inkuiri dengan strategi metakognisi OPMER pada kelas eksperimen dan model pembelajaran inkuiri saja pada kelas kontrol. Lembar observasi ini diisi oleh *observer* dengan membumbuhkan tanda centang (🗸) bila aktivitas guru atau peserta didik dalam tahapan pembelajaran yang dinilai terlaksana. Bila terlaksana *observer* dapat mengisi dengan empat kriteria, yaitu sangat baik, baik, cukup baik, dan kurang baik.

Adapun lembar observasi keterlaksanaan pembelajaran disusun berdasarkan sintaks pembelajaran inkuiri terbimbing dan strategi

metakognisi OPMER yang diterapkan dalam proses pembelajaran. Karena indikator pada lembar observasi bersifat derivatif dari sintaks tersebut, validitas isinya dianggap telah tercermin melalui kesesuaian teoretis dan telaah dosen pembimbing.

3.3.3 Lembar kuesioner profil metakognisi OPMER

Lembar kuesioner profil metakognisi OPMER seperti yang terlmpir pada Lampiran.8 merupakan lembar kuesioner berisikan pertanyaan-pertanyaan tahapan strategi dan kesadaran metakognisi OPMER yang diisi oleh peserta didik. Kuesioner ini dikembangkan berdasarkan indikator strategi metakognisi OPMER menurut Zhang yang dilakukan selama pembelajaran. Lembar kuesioner ini diisi oleh peserta didik kelas eksperimen setelah melaksanakan pembelajaran. Setiap pertanyaan dijawab dengan empat kriteria, yaitu sangat setuju, setuju, cukup setuju, dan kurang setuju.

Kuesioner profil metakognisi OPMER disusun secara ketat berdasarkan indikator strategi metakognisi OPMER yang dikembangkan oleh Zhang & Lockee, (2022). Indikator tersebut dimaksudkan untuk menangkap kecenderungan berpikir peserta didik sesuai dengan kerangka metakognisi OPMER. Proses validasi oleh pihak luar dikhawatirkan akan menggeser makna indikator dan mengurangi ketepatan pengukuran terhadap konstruk yang ingin diteliti. Oleh karena itu, instrumen dijamin melalui kesesuaian teoretis dan pertimbangan substantif peneliti serta telaah pembimbing.

Tabel 3. 3 Kuesioner Profil Metakognisi OPMER

No	Komponen Strategi Metakognisi OPMER	Pernyataan
1	Orient	Saya dapat mengidentifikasi informasi penting pada
1	(SM-1)	persoalan fisika

Yesi Puspita Sari, 2025

No	Komponen Strategi Metakognisi	Pernyataan
	OPMER	
		Saya dapat menentukan tujuan atau apa yang ingin
		diselesaikan dalam persoalan fisika
		Saya dapat menuliskan apa yang diketahui dan tidak
		diketahui ketika diberikan persoalan fisika
		Saya dapat mengaitkan prinsip dan konsep fisika
		yang berguna untuk menyelesaikan persoalan
		Saya dapat menyusun rencana prosedur untuk
2	Plan	mencapai tujuan yang telah ditetapkan sebelumnya
2	(SM-2)	Saya dapat memilih strategi penyelesaian yang
		paling sesuai untuk suatu persoalan fisika
		Saya dapat melaksanakan rencana prosedur yang
	Monitor	telah ditetapkan sebelumnya untuk menyelesaikan
		suatu persoalan
3		Saya melakukan pemantauan selama pengerjaan
	(SM-3)	persoalan untuk menghindari kekeliruan
		Saya menilai apakah rencana prosedur yang
		diggunakan efektif untuk mencapai tujuan
-		Saya dapat menganalisis data untuk dapat menjawab
		persoalan atau sebagaimana tujuan yang ingin
4	Evaluate	dicapai
4	(SM-4)	Saya dapat memberikan argumen terhadap solusi
		yang diusulkan untuk meyakinkan ketepatan solusi
		yang dibuat
	D. Cl.	Saya dapat menentukan apakah perubahan dan
5	Reflect	penyesuaian prosedur penyelesaian diperlukan
	(SM-5)	untuk memberikan hasil yang lebih baik.

No	Komponen Strategi Metakognisi OPMER			Pernya	taan	
		Saya	dapat	membuat	kesimpulan	terhadap
		penyel dipela		uatu persoala	ın dan hal-hal y	ang sudah

3.3.4 Tes Keterampilan Pemecahan Masalah

Tes yang digunakan seperti yang terlampir pada ampiran. 5, dalam penelitian ini bertujuan untuk mengukur kemampuan pemecahan masalah peserta didik dalam bentuk soal uraian dengan mempertimbangkan indikator pada setiap tahapan pemecahan masalah menurut (Heller dkk., 1992). Tes Keterampilan Pemecahan Masalah diujikan kepada peserta didik sebagai lembar *pretest* untuk mengetahui kemampuan pemecahan masalah sebelum diberikan treatment dan diujikan sebagai posttest untuk mengetahui kemampuan pemecahan masalah peserta didik setelah diberikan treatment penerapan strategi metakognisi OPMER dalam pembelajaran inkuiri terbimbing pada kelas eksperimen dan pembelajaran inkuiri terbimbing saja pada kelas kontrol. Instrumen tes ini terdiri dari enam butir soal uraian dengan setiap butir soal terdapat empat pertanyaan tambahan yang merupakan adaptasi dari tahapan pemecahan masalah menurut (Heller dkk., 1992). Adapun seluruh butir soal dirancang untuk mengukur seluruh tahapan kemampuan pemecahan masalah, yaitu Visualize the Problem, Describe the Physics, Plan a Solution, Execute the Plan, dan Check and Evaluate. Oleh karena itu, indikator yang tercantum berlaku untuk semua soal. Kisi-kisi instrumen tes kemampuan pemecahan masalah adalah sebagai berikut

Tabel 3. 4 Kisi-Kisi Intrumen Tes Kemampuan Pemecahan Masalah

Tahapan Kemampuan	Indikator soal	Jumlah				
Pemecahan Masalah	indikator soar	soal				
1. Visualize the problem	Peserta didik dapat menentukan					
2. Describe The Physics	besar cepat rambat gelombang	1				
3. Plan A Solution	melalui pola gelombang	1				
4. Execute the plan	transversal.					
5. Check and evaluate	Peserta didik dapat menentukan					
	nilai besaran-besaran gelombang	1				
	melalui pola gelombang	1				
	longitudinal.					
	Peserta didik dapat menentukan					
	persamaan gelombang	1				
	berdasarkan besaran-besaran					
	gelombang yang diberikan.					
	Peserta didik dapat menggunakan					
	persaamaan gelombang berjalan	1				
	untuk menghitung simpangan di	1				
	suatu titik					
	Peserta didik dapat menggunakan					
	persamaan gelombang stasioner	1				
	untuk menghitung simpangan di	1				
	suatu titik					
	Peserta didik dapat menentukan					
	nilai massa per satuan panjang	1				
	tali (μ) berdasarkan data hasil	1				
	percobaan Melde.					

3.4 Prosedur Penelitian

Prosedur penelitian ini terbagi kedalam tiga tahapan utama, yaitu tahap persiapan, penelitian, dan penyusunan laporan penelitian. Adapun, tahapan yang dimaksud adalah sebagai berikut:

Tabel 3. 5 Prosedur Penelitian

Tahap Penelitian	Kegiatan
	1. Melakukan studi pendahuluan dengan wawancara
	kepada guru dan memberikan kuesioner pada
	peserta didik didik untuk mengetahui keadaan
	lapangan, permasalahan yang terjadi selama
	pembelajaran, dan tingkat kemampuan pemecahan
	masalah peserta didik.
Tahap Persiapan	1. Melakukan studi pendahuluan dengan wawancara
Penelitian	kepada guru dan memberikan kuesioner pada peserta
	didik untuk mengetahui keadaan lapangan,
	permasalahan yang terjadi selama pembelajaran, dan
	tingkat kemampuan pemecahan masalah peserta
	didik.
	2. Merumuskan masalah penelitian.
	3. Melakukan studi literatur untuk menentukan solusi
	penyelesaian masalah penelitian.
	4. Menentukan metode dan desain penelitian, serta
	sampel penelitian.
	5. Menyusun modul ajar, LKPD lembar observasi
	keterlaksanaan pembelajaran, kuesioner profil
	metakognisi OPMER, dan lembar tes kemampuan
	pemecahan masalah peserta didik.
	6. Melakukan pengujian terhadap instrument tes
	kemampuan pemecahan masalah yang sudah dibuat
	dan divalidasi oleh ahli.

Tahap Penelitian		Kegiatan					
	1.	Memberikan lembar <i>pretest</i> kemampuan pemecahan					
		masalah peserta didik dengan waktu pengerjaan 1 JP					
		(1 x 45 menit)					
Tahap	2.	Melaksanakan penelitian dengan menerapkan					
Pelaksanaan		strategi metakognisi OPMER dalam pembelajaran					
Penelitian		Inkuiri Terbimbing selama tiga pertemuan dengan					
i chentian		tiap pertemuan 2 JP (2 x 45 menit).					
	3.	Memberikan lembar <i>posttest</i> kemampuan					
		pemecahan masalah peserta didik dengan waktu					
		pengerjaan 2 JP (2 x 45 menit)					
Tahap	1.	Mengolah dan menganalisis data yang didapatkan					
Penyusunan		dari lembar observasi keterlaksanaan pembelajaran,					
Laporan		lembar kuesioner profil metakognisi OPMER,					
Penelitian		pretest kemampuan pemecahan peserta didik, dan					
		posttest kemampuan pemecahan masalah peserta					
		didik.					
	2.	Menyusun laporan penelitian					
	3.	Melaporkan hasil laporan penelitian					

3.5 Analisis Data

3.5.1 Analisis Lembar Tes Kemampuan Pemecahan Masalah

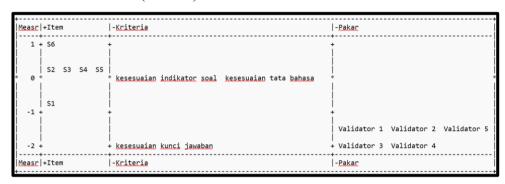
Dalam penelitian ini, analisis instrumen kemampuan pemecahan masalah dilakukan menggunakan pendekatan *Rasch Model*. Analisis ini bertujuan untuk mengevaluasi validitas konstruk, validitas setiap butir soal, reliabilitas instrumen, dan tingkat kesukaran soal sebagai bagian dari proses memperbaiki tes dan seleksi butir. Proses ini dilakukan sebelum instrumen digunakan dalam penelitian, sehingga fokus utamanya adalah pada kelayakan setiap butir soal, bukan pada generalisasi hasil terhadap populasi. Maknanya, analisis ini tidak dimaksudkan untuk mewakili karakteristik seluruh populasi peserta didik, melainkan untuk menilai sejauh mana setiap butir dapat berfungsi sebagaimana mestinya.

58

Meskipun jumlah peserta dalam penelitian ini hanya sebanyak 30 orang, penggunaan *Rasch Model* tetap dianggap layak secara metodologis. Menurut Linacre, (1994), ukuran sampel yang kecil dapat digunakan selama data menunjukkan sebaran respons yang memadai dan tidak terdapat kesenjangan yang ekstrem dalam kategori skor. Dalam penelitian ini, rentang skor total peserta tergolong sempit (70–85), skor pada masingmasing soal menunjukkan variasi yang cukup luas, termasuk peserta yang memperoleh skor minimum hingga maksimum. Kondisi ini memungkinkan terbentuknya estimasi parameter item yang stabil.

Menurut, Wright & Stone, (1979) juga menegaskan bahwa dalam tahap pengembangan awal instrumen, sampel kecil dapat memberikan informasi yang cukup untuk mengevaluasi kelayakan item, diyatakan bahwa proses kalibrasi item tidak memerlukan jumlah peserta yang besar, selama respons yang dikumpulkan memiliki distribusi yang bermakna dan mencerminkan variasi kemampuan peserta.

Dengan demikian, penggunaan *Rasch Model* dalam penelitian ini tetap dapat dipertanggungjawabkan secara metodologis meskipun jumlah responden relatif kecil, karena tujuannya adalah untuk mendukung seleksi, validasi, dan revisi instrumen sebelum digunakan pada tahap penelitian utama.


3.5.1.1 Uji Validitas isi

Uji Validitas isi merupakan validasi instrumen tes kemampuan pemecahan masalah yang dilakukan seorang ahli dengan memberi kritik, saran, dan masukan yang bertujuan untuk memperbaiki kekurangan dan kualitas instrumen tes yang akan digunakan dalam penelitian. Uji validitas ahli dilakukan oleh empat dosen Pendidikan Fisika UPI dan satu guru mata pelajaran fisika.

Instrumen validasi seperti yang terlmpir pada Lampiran.9 disusun dalam bentuk lembar penilaian yang diberikan kepada masing-masing ahli untuk menilai kualitas butir soal. Lembar validasi tersebut mencakup tiga aspek penilaian utama, yaitu: (1) kesesuaian indikator soal dengan butir soal; (2) kesesuaian kunci jawaban dengan butir soal; dan (3) kesesuaian

Yesi Puspita Sari, 2025

penggunaan tata bahasa dalam butir soal. Selain aspek penilaian, lembar validasi juga dilengkapi dengan kolom saran dan masukan yang dapat diisi oleh validator sebagai bentuk umpan balik terhadap butir soal yang dianalisis. Penilaian dilakukan berdasarkan pedoman penskoran, yaitu skor 1 untuk kategori "sesuai" dan skor 0 untuk kategori "tidak sesuai". Selanjutnya, data hasil validasi oleh para ahli direkapitulasi dan dianalisis menggunakan perangkat lunak MINIFAC versi 4.3.2 untuk memperoleh gambaran tingkat validitas setiap butir soal berdasarkan pendekatan *Many-Facet Rasch Model* (MFRM).

Gambar 3. 1 Hasil uji validasi ahli dengan Many-Facet Rasch Model (MFRM)

Berdasarkan output analisis menggunakan perangkat lunak *MINIFAC* versi 4.3.2 diperoleh *Vertical Ruler* yang memvisualisasikan skala logit menjadi empat kolom, yaitu *Measure* (logit), *Item* (kode soal), *Kriteria* (aspek penilaian), dan *Pakar* (validator). Kolom pertama, *measure* menunjukkan skala logit pada rentang +1 sampai -2 yang merepresentasikan tingkat kevalidan masing-masing komponen. Kolom kedua menampilkan item butir soal yang dikodekan dengan S1 sampai S6. Kolom ketiga menunjukkan tiga aspek penilaian yang digunakan, yaitu kesesuaian indikator soal, kesesuaian kunci jawaban, dan kesesuaian tata bahasa. Sedangkan, kolom keempat menunjukan posisi masing-masing validator berdasarkan tingkat "keketatan" dalam memberikan penilaian.

Berdasarkan gambar 3.1 nilai logit 0 merupakan kriteria minimum item yang dianggap memiliki kualitas baik atau valid oleh ahli. Sedangkan nilai logit negatif (< dari 0) berarti item tersebut buruk atau tidak valid (Kholili dkk., 2024). Oleh karena itu, item butir S6 yang berada di posisi

paling atas pada logit +1,51 mengartikan bahwa soal ini memiliki kualitas yang paling baik diantara yang lainnya, sehingga S6 menjadi item yang valid. Adapun item butir S2, S3, S4, dan S5 dengan nilai logit +0,18. Hal ini menunjukkan bahwa keempat soal tersebut memiliki tingkat kesesuaian yang seimbang, sehingga dapat dikategorikan sebagai soal yang juga valid. Sedangkan, item butir S1 berada pada posisi di bawah pada titik logit -0,73 yang mengartikan bahwa soal ini mendapatkan skor terendah dari validator dan dinyatakan tidak valid. Namun, S1 tetap digunakan, sesuai dengan saran vaidator untuk memperbaiki tata bahasa dan indikator yang digunakan. Sehingga, seluruh item butir soal digunakan, namun perlu diperbaiki sesuai saran dan masukan dari validator.

Selain itu, hasil visualisasi *vertical rule* juga memperlihatkan masing-masing aspek penilaian yang memberikan informasi mengenai tingkat kesulitan tiap aspek. Berdasarkan skala logit, diketahui bahwa aspek "kesesuaian indikator soal" dan "kesesuaian tata bahasa" berada pada posisi logit 0 yang menandakan bahwa kedua kriteria ini memiliki tingkat kesulitan yang lebih tinggi untuk dipenuhi. Sedangkan, aspek "kesesuaian kunci jawaban" berada pada posisi logit –2, yang menunjukkan bahwa kriteria ini merupakan aspek yang paling mudah dipenuhi, dimana semua item butir soal memperoleh skor satu atau sesuai. Lebih lanjut, posisi logit juga menampilkan kecenderungan penilaian dari para validator. Validator 1, validator 2, dan validator 5 berada pada posisi logit -1,43 yang menunjukkan bahwa ketiganya memiliki kecenderungan penilaian yang tidak terlalu ketat. Sedangkan, validator 3 dan validator 4 berada di titik lebih rendah yaitu logit -2 yang mengindikasikan bahwa keduanya merupakan validator dengan penilaian paling "longgar" dalam memberikan skor satu atau sesuai.

Selain menyajikan hasil validasi isi butir soal berdasarkan penilaian ahli, analisis dengan pendekatan *Many-Facet Rasch Model (MFRM)* juga menghasilkan estimasi reliabilitas untuk tiap facet, yaitu pakar, kriteria, dan item. Informasi reliabilitas ini disertakan untuk menggambarkan tingkat konsistensi penilaian dan kemampuan model dalam membedakan karakteristik antar elemen dalam masing-masing facet.

Yesi Puspita Sari, 2025

Tabel 3.6 Hasil Uji Reliabilitas Validitas Ahli

				Mean	Mean	
Facet	Reliability	Separation	Strata	Infit	Outfit	Keterangan
				MnSq	MnSq	
Pakar	ar 0,00 0,00 0,33 1,00 1,00		1,00	Penilaian antar		
1 akai	0,00	0,00	0,55	1,00	1,00	validator seragam
Kriteria	0,34	0,71	1,29	1,00	1,00	Variasi terbatas, fit
Kiitciia	0,54	0,71	1,29	1,00	1,00	dengan model
Item	0,00	0,00	0,33	1,00	1,00	Dinilai seragam,
Itelli	0,00	0,00	0,55	1,00	1,00	seluruh item fit

Berdasarkan Tabel 3.6, nilai reliabilitas pada ketiga facet, yaitu pakar, kriteria, dan item, menunjukkan hasil yang rendah. Pada facet pakar dan item, nilai reliability sebesar 0.00, separation 0.00, dan strata 0.33 mengindikasikan bahwa model tidak mampu membedakan kontribusi antar validator maupun kualitas item. Karena, seluruh validator memberikan skor yang hampir sama terhadap seluruh item dan kriteria, model ini tidak memiliki cukup variasi data untuk mengestimasi perbedaan kemampuan atau kontribusi masing-masing facet. Hal ini bukan disebabkan oleh kesalahan penilai maupun kelemahan instrumen, tetapi karena homogenitas skor yang terlalu tinggi.

Meskipun nilai reliabilitas rendah, seluruh item dan kriteria memiliki nilai Infit dan Outfit MnSq sebesar 1.00 serta ZStd mendekati 0. Maknanya, semua butir dan kriteria dinilai secara konsisten dan sesuai dengan ekspetasi model Rasch. Nilai reliabilitas yang rendah diinterpretasikan bahwa penilaian sangat seragam, bukan sebagai bukti ketidaktepatan model atau buruknya kualitas instrumen. Sehingga, penelitian selanjutnya, perlu memiliki kriteria skor dan kriteria penilaian yang lebih banyak, juga validator dengan latar belakang yang lebih

bervariasi yang dapat membantu meningkatkan variasi skor dan menghasilkan estimasi yang lebih optimal dalam model Rasch.

3.5.1.2 Uji Validitas Konstruk

Validitas konstruk digunakan untuk menilai suatu parameter isntrumen tes yang diuji dapat mengukur mengukur satu dimensi saja. Namun, jika tes mengukur lebih dari satu dimensi, maka validitas konstruk tersebut menjadi kurang dipercaya. Salah satu keunggulan validitas konstruk terletak pada kemampuannya dalam mengidentifikasi komponen sifat yang diukur oleh instrumen (Yusuf dkk., 2023). Proses validasi instrumen dengan Rasch Model dilakukan secara bertahap untuk memastikan bahwa instrumen tes yang dikembangkan valid secara konstruk dan memiliki kualitas item yang baik. Tahap pertama adalah memeriksa nilai unidimensionalitas instrumen untuk memastikan bahwa seluruh item butir soal instrumen tes mengukur satu konstruk atau dimensi utama secara konsisten dalam hal ini adalah kemapuan pemecahan masalah peserta didik. Uji unidimensionalitas dianalisis menggunakan Principal Components Analysis (PCA) of Residuals melalui perangkat lunak Minifac versi 4.3.2 dengan menganalisis output table nomor 23 item dimensionality berdasarkan data validasi para ahli.

Adapun kriteria penilaian untuk tes dinyatakan unidimensionalitas adalah jika salah satu dari dua kondisi berikut terpenuhi: (1) nilai raw variance explained by measured mencakup setidaknya 20% dari keseluruhan variasi data; dan (2) Eigenvalue faktor pertama harus secara jelas melebihi nilai eigen faktor kedua (Ajeigbe & Afolabi, 2014; Hainest, 2017).

Table of STANDARDIZED RESIDUAL va	riance	in Eigen	/alue un:	its = I	tem info	rmation	units
	E	igenvalue	Observ	∕ed E	xpected		
Total raw variance in observations	=	35.1766	100.0%		100.0%		
Raw variance explained by measures	=	29.1766	82.9%		81.5%		
Raw variance explained by persons		11.0203	31.3%		30.8%	•	
Raw Variance explained by items	=	18.1563	51.6%		50.7%		
Raw unexplained variance (total)	=	6.0000	17.1%	100.0%	18.5%		
Unexplned variance in 1st contrast	=	2.6378	7.5%	44.0%			
Unexplned variance in 2nd contrast	=	1.1430	3.2%	19.1%			
Unexpined variance in 3rd contrast	=	. 9205	2.6%	15.3%	•		
Unexplned variance in 4th contrast	=	.6896	2.0%	11.5%			
Unexplned variance in 5th contrast	=	.5909	1.7%	9.8%			

Gambar 3. 2 Hasil uji unidimensionalitas instrumen tes

Berdasarkan gambar 3.2 terkait hasil uji unidimensionalitas instrumen tes kemampuan pemecahan masalah, ditemukan bahwa berdasarkan kriteria nilai *raw variance explained by measured* sebesar 81,5% dari total varians jauh di atas batas minimum yang ditetapkan. Adapun nilai *eigenvalue* faktor pertama sebesar 2,64 sedangkan faktor kedua hanya 1,14 menunjukkan dominasi faktor pertama dalam menjelaskan variasi data. Dengan terpenuhinya kedua kriteria tersebut, dapat dikatakan bahwa instrumen tes yang digunakan dalam penelitian ini memenuhi syarat unidimensionalitas dan dapat dinyatakan bahwa instrumen tes hanya mengukur satu konstruk utama secara konsisten yaitu kemampuan pemecahan masalah peserta didik.

Setelah memastikan instrumen bersifat unidimensional, tahap selanjutnya adalah memeriksa kualitas masing-masing item butir soal menggunakan perangkat lunak Winsteps versi 5.5.0. Pada tahap ini, instrumen tes yang sudah diperbaiki berdasarkan lembar validasi ahli diujicobakan kepada 30 peserta didik yang sudah mempelajari materi gelombang mekanik. Adapun uji validasi dianalisis menggunakan winstep dengan menganalisis *output table* nomor 10 *item fit order*. Selanjutnya, menganalisis nilai *outfit MNSQ dan ZSTD*, juga nilai *PT measure corr* yang menunjukkan sejauh mana item butir soal berfungsi secara konsisten dalam mengukur konstruk kemampuan pemecahan masalah peserta didik.

Adapun kriteria penilaian untuk item butir soal dinyatakan valid maka instrumen tersebut harus memenuhi paling sedikit 1 dari 3 kriteria yang harus dipenuhi (Sumintono & Widhiarso, 2015), sebagai berikut:

Tabel 3. 7 Interpretasi data uji validasi item butir soal

No	Kriteria	Nilai yang diterima
1	Outfit Mean-Square (MNSQ)	0.5 < MNSQ < 1.5
2	Outfit Z-Standard (ZSTD)	-0.2 < ZSTD < +2.0
3	Pt Measure Corr	0,4 < Pt Measure Corr < 0,85
		(Damana dlala 2024)

(Darmana dkk., 2024)

ENTRY	TOTAL	TOTAL	JMLE	MODEL	IN	IFIT	OUT	FIT	PTMEAS	UR-AL	EXACT	MATCH	
NUMBER	SCORE	COUNT	MEASURE	S.E.		ZSTD			CORR.	EXP.	OBS%	EXP%	Item
1	342	30	-2.07	.26	1.50	1.43	1.14	.45	A .53	.52	63.3	58.3	S1
2	327	30	-1.26	.21	1.00	.11	1.38	1.08	B .57	.62	40.0	45.1	S2
3	304	30	43	.17	.76	84	1.30	1.04	C .63	.70	36.7	38.1	S3
5	237	30	1.13	.14	1.06	.32	.91	27	c .82	.80	36.7	28.9	S5
6	181	30	2.06	.12	.88	39	.86	46	b .88	.83	13.3	25.8	S6
4	265	30	.57	.15	.69	-1.19	.72	-1.08	a .80	.77	30.0	32.5	S4
MEAN	276.0	30.0	.00		.98		1.05	.13			36.7		
P.SD	55.4	.0	1.41	.05	.26	.85	.24	.80			14.8	11.0	

Gambar 3. 3 Hasil uji validasi item butir soal

Berdasarkan kriteria pada Tabel 3.7, nilai outfit means-square (MNSQ), outfit z-standard (ZSTD), dan point measure correlation (Pt Measure Corr) pada hasil pengolahan pada Gambar 3.3 dapat dikategorikan sebagai berikutt

Tabel 3. 8 Hasil interpretasi uji validasi item butir soal

No item	MNSQ	ZSTD	Pt Measure Corr
1	Diterima	Diterima	Diterima
2	Diterima	Diterima	Diterima
3	Diterima	Diterima	Diterima
4	Diterima	Diterima	Diterima
5	Diterima	Ditolak	Diterima
6	Diterima	Ditolak	Ditolak

Berdasarkan Tabel 3.8 terkait pengkategorian hasil uji validasi item butir soal, sesuai dengan kriteria pada tabel 3.7 didapatkan bahwa item butir soal 1, 2, 3, dan 4 memenuhi seluruh kriteria, sehingga empat soal ini dinyatakan valid. Sedangkan untuk item butir soal 5 memenuhi dua dari tiga kriteria, karena nilai ZSTD -0,27 sedikit melebihi batas nilai ZSTD yang seharusnya yaitu -0,2. Dan item butir soal 6 memenuhi satu dari tiga kriteria, karena nilai ZSTD -0,46 dan nilai *Pt measure corr* 0,88 melebihi nilai *Pt measure corr* yang seharunya yaitu 0,85. Maka, seluruh item butir soal dinyatakan valid karena seluruh item memenuhi setidaknya satu kriteria penilaian.

3.5.1.3 Uji Reliabilitas

Reliabilitas adalah tingkat konsistensi hasil pengukuran yang diperoleh dari suatu instrumen tes ketika diterapkan dalam kondisi yang relatif sama. Sebuah instrumen dikatakan reliabel apabila hasil yang diberikan tidak menunjukkan perbedaan signifikan ketika digunakan berulang dalam waktu yang berdekatan (Sumintono & Widhiarso, 2015). Rendahnya reliabilitas dapat disebabkan oleh kualitas butir soal yang buruk, seperti soal yang membingungkan atau ketidakkonsistenan dalam penskoran.

Adapun dalam penelitian ini, uji reliabilitas menggunakan data hasil uji coba instrumen tes yang dianalisis menggunakan perangkat lunak winstep versi 5.5.0 pada *output table* nomor 3.1 *summary statistic*.

Tabel 3. 9
Interpretasi nilai *item* dan *person reliability*

Nilai	Interpretasi
< 0,67	Lemah
0,67 - 0,80	Cukup
0,80 - 0,90	Bagus
0,90 - 0,94	Bagus Sekali
> 0,94	Istimewa

(Sari & Mahmudi, 2024)

Tabel 3. 10 Interpretasi nilai *cronbach alpha*

Nilai	Interpretasi					
< 0,5	Buruk					
0,5 - 0,6	Jelek					
0,6 - 0,7	Cukup					
0,7 - 0,8	Bagus					
> 0,8	Bagus Sekali					
	(0 : 0) (1 1: 0004)					

(Sari & Mahmudi, 2024)

SU	JMMARY OF 30	MEASURED F	Person					
	TOTAL			MODEL		INFIT	OUT	FIT
İ	SCORE	COUNT	MEASURE	S.E.	MNS	Q ZSTD	MNSQ	ZSTD
MEAN	55.2	6.0	1.85	.38	.9	408	1.05	01
SEM	1.6	.0	.21	.02	.1	2 .16	.17	.19
P.SD	8.5	.0	1.14	.10	.64	4 .88	.94	1.01
S.SD	8.6	.0	1.16	.10	.6	5 .90	.95	1.02
MAX.	70.0	6.0	4.88	.76	3.2	2 2.26	4.97	3.12
MIN.	31.0	6.0	53	.28	. 20	0 -1.58	.28	-1.40
REAL	RMSE .44	TRUE SD	1.05 SEPA	RATION	2.38 P	erson REL	IABILIT	Y .85
MODEL	RMSE .39	TRUE SD	1.07 SEPA	RATION	2.73 P	erson REL	IABILIT	Y .88
S.E.	OF Person M	EAN = .21						i
	RAW SCORE-TO						•	
CRONBAC	CH ALPHA (KR	-20) Persor	n RAW SCORE	"TEST"	RELIABIL	ITY = .83	SEM =	3.53
STANDAR	RDIZED (50 I	TEM) RELIA	3ILITY = .98					

Gambar 3. 4 Hasil *person reliability* dan *cronbach*

Sl	JMMARY OF	6 MEASURED	Item							
	TOTAL		MEAGL		DEL			IT		
	SCORE	COUNT	MEASU	JRE S	.E.	· · · · · · · ·		ZSTD	MNSQ	ZSTD
MEAN	276.0	30.0		00	.18		98	09	1.05	.13
SEM	24.8	.0		63	. 02		.12	.38	.11	.36
P.SD	55.4	.0	1.	41	. 05		.26	.85	.24	.80
S.SD	60.7	.0	1.	54	. 05		.29	.94	.26	.87
MAX.	342.0	30.0	2.	06	. 26	1.	.50	1.43	1.38	1.08
MIN.	181.0	30.0	-2.	07	.12		.69	-1.19	.72	-1.08
REAL	RMSE .:	20 TRUE SD	1.39	SEPARAT	ION	7.06	Item	REL:	IABILIT	7 .98
	RMSE .:	18 TRUE SD EAN = .63	1.39	SEPARAT	ION	7.68	Item	REL	IABILIT [\]	7 .98
Global		O-MEASURE C s: please s LE=1.0000			3					

Gambar 3. 5 Hasil *item reliability*

Berdasarkan kriteria pada Tabel 3.9 dan 3.10 serta hasil analisis uji reliabilitas pada Gambar 3.4 dan 3.5, nilai *person reliability* 0,85 tergolong bagus, niai *item reliability* 0,98 tergolong istimewa, dan nilai *cronbach alpha* 0,83 tergolong bagus sekali. Nilai *person reliability* yang bagus menunjukkan bahwa kemampuan pemecahan masalah peserta didik dapat diukur secara konsisten. Sementara itu, nilai *item reliability* yang istimewa juga menunjukan bahwa item butir soal memiliki kualitas yang stabil dan mampu membedakan tingkat kemampuan peserta secara akurat. Adapun nilai *cronbach alpha* yang bagus sekali mencerminkan bahwa seluruh item butir soal dalam instrumen tes memiliki konsistensi kuat. Dengan demikian,

berdasarkan ketiga indikator tersebut instrumen tes dinyatakan memiliki reliabilitas yang baik dan layak digunakan dalam pengukuran kemampuan pemecahan masalah peserta didik secara konsisten.

3.5.1.4 Tingkat kesulitan item butir soal

Tingkat kesukaran item butir soal merujuk pada kemungkinan peserta didik menjawab benar pada suatu soal dengan tingkat kemampuan tertentu. Adapun dalam penelitian ini tingkat kesulitan item butir soal menggunakan hasil uji coba instrumen tes dan dianalisis dengan perangkat lunak winstep versi 5.5.0 pada *output table* nomor 13 *item: measure*.

Tabel 3. 11 Interpretasi tingkat kesulitan item butir soal

Nilai	Interpretasi
<i>b</i> < −2,0	Sangat mudah
$-2.0 \le b < -1.0$	Mudah
$-1.0 \le b \le +1.0$	Sedang
$+1.0 < b \le +2.0$	Sulit
<i>b</i> > 2,0	Sangat sulit
	/= 1 = 2 = 1

(Sari & Mahmudi, 2024)

ENTRY	TOTAL	TOTAL	JMLE	MODEL	IN	IFIT	OU1	FIT	PTMEAS	UR-AL	EXACT	MATCH	
NUMBER	SCORE	COUNT	MEASURE	S.E.	MNSQ	ZSTD	MNSQ	ZSTD	CORR.	EXP.	OBS%	EXP%	Item
6	181	30	2.06	.12	.88	39	.86	46	.88	.83	13.3	25.8	S6
5	237	30	1.13	.14	1.06	.32	.91	27	.82	.80	36.7	28.9	S5
4	265	30	.57	.15	.69	-1.19	.72	-1.08	.80	.77	30.0	32.5	S4
3	304	30	43	.17	.76	84	1.30	1.04	.63	.70	36.7	38.1	S3
2	327	30	-1.26	.21	1.00	.11	1.38	1.08	.57	.62	40.0	45.1	S2
1	342	30	-2.07	. 26	1.50 +	1.43	1.14	.45	.53	.52	63.3	58.3	S1
MEAN	276.0	30.0	.00		.98		1.05	.13				38.1	į
P.SD	55.4 	.0 	1.41 	.05	.26 	.85	.24	.80	 	l	14.8	11.0	

Gambar 3. 6 Hasil tingkat kesulitan item butir soal

Berdasarkan kriteria pada Tabel 3.11, nilai *jmle measure* pada hasil pengolahan pada Gambar 3.6 item butir soal dapat dikategorikan dengan tingkat kesulitan sebagai berikut:

Tabel 3. 12 Hasil interpretasi tingkat kesulitan item butir soal

No item	Interpretasi
1	Sangat mudah
2	Mudah
3	Sedang
4	Sedang
5	Sulit
6	Sangat sulit

Berdasarkan tabel 3.12 terkait hasil interpretasi tingkat kesulitan setiap item butir soal pada tes kemampuan pemecahan masalah. Item butir soal 1 dikategorikan sebagai soal yang sangat mudah, item butir soal 2 dikategorikan sebagai soal yang mudah, item butir soal 3 dan 4 dikategorikan sebagai soal yang sedang, item butir soal 5 dikategorikan sulit, dan item butir soal 6 dikategorikan sebagai soal yang sangat sulit. Maka, dapat disimpulkan bahwa variasi tingkat kesulitan item butir soal pada tes mencakup spektrum yang luas, mulai dari sangat mudah hingga sangat sulit. Sehingga, mampu mengukur kemampuan peserta didik secara komprehensif pada berbagai tingkat kesulitan.

3.5.1.5 Penentuan pemilihan item butir soal

Berdasarkan uji validasi isi, validasi konstruk, reliabilitas, dan tingkat kesukaran terhadap instrumen tes kemampuan pemecahan masalah. Maka, berikut kesimpulan pemilihan item butir soal yang digunakan dalam penelitian ini yang terdapat pada tabel 3.13

Tabel 3. 13 Pemilihan item butir soal

No	Valid		Validitas	ditas konstruk		Reli		ıgkat ıkaran	Vasimuulaa
item	itas isi	MN SQ	ZSTD	Pt mea	Kriter ia	abili tas	Meass ure	Kriteria	Kesimpulan
1	Tidak	1,14	+0,45	0,53	Valid	Baik	-2.07	Sangat	Digunakan
	Valid							mudah	dengan
									revisi
2	Valid	1,38	+1,08	0,57	Valid	Baik	-1,26	Mudah	Digunakan
3	Valid	1,30	+1,04	0,63	Valid	Baik	-0,43	Sedang	Digunakan
4	Valid	0,72	-1,08	0,80	Valid	Baik	-0,57	Sedang	Digunakan
5	Valid	0,91	-0,27	0,82	Valid	Baik	+1,13	Sulit	Digunakan
6	Valid	0,86	-0,46	0,88	Valid	Baik	+2,06	Sangat	Digunakan
								sulit	

Maka, berdasarkan Tabel 3.13, seluruh item butir soal (butir kesatu hingga keenam) digunakan dalam penelitian. Meskipun demikian, tidak semua item memenuhi seluruh kriteria penilaian. Item soal pertama dinyatakan tidak valid berdasarkan validitas isi oleh ahli dan perlu diperbaiki, dari segi indikator dan tata bahasanya sesuai saran dan masukan validator. Oleh karena itu, item tersebut tetap digunakan setelah direvisi. Adapun lima item lainnya (butir kedua hingga keenam) telah memenuhi kriteria validitas dan reliabilitas, dengan variasi tingkat kesukaran yang luas. Namun, seluruh butir soal tetap diperbaiki dari segi tata bahasa agar lebih mudah dipahami oleh peserta didik, meskipun perbaikannya bersifat minor dan tidak berkaitan dengan substansi atau indikator soal.

3.5.2 Analisis Lembar Keterlaksanaan Pembelajaran

Data analisis keterlaksanaan pembelajaran pada penelitian ini terbagi menjadi lembar keterlaksanaan dua kelas, yaitu kelas kontrol menggunakan lembar keterlaksanaan penerapan model pembelajaran inkuiri terbimbing tanpa strategi metakognisi OPMER dan kelas eksperimen menggunakan lembar keterlaksanaan penerapan model pembelajaran inkuiri terbimbing

dengan strategi metakognisi OPMER yang diisi dan diamati oleh observer selama kegiatan belajar mengajar berlangsung.

Kriteria dan penskoran terhadap setiap kegiatan pada lembar keterlaksanaan pembelajaran tersebut adalah skor 4 untuk sangat baik, skor 3 untuk baik, skor 2 untuk cukup baik, dan skor 1 untuk kurang baik. Pengolahan data keterlaksanaan pembelajaran dihitung dari persentase keterlaksanaan pembelajaran oleh persamaan berikut:

$$\% KP = \frac{\sum skor \ yang \ diperoleh}{\sum skor \ maksimal} \ x \ 100\%$$
 (3.1)

(Dervia Jaya dkk., 2022; Hildayati & Mayasari, 2023)

3.5.3 Analisis Lembar Profil metakognisi OPMER

Data analisis profil metakognisi OPMER diperoleh dari lembar kuesioner strategi metakognisi yang diisi oleh peserta didik kelas eksperimen berdasarkan strategi metakognisi OPMER yang dilakukannya selama proses pembelajaran. Adapun kriteria dan penskoran terhadap lembar kusioner tersebut adalah skor 4 untuk sangat setuju, skor 3 untuk setuju, skor 2 untuk cukup setuju, dan skor 1 untuk kurang setuju.

Pengolahan data dilakukan dengan menghitung persentase jumlah responden pada setiap kategori jawaban untuk tiap pernyataan yang terdapat dalam komponen strategi metakognisi OPMER. Persentase ini diperoleh dari perbandingan jumlah responden pada kategori tertentu terhadap jumlah responden keseluruhan, kemudian dikalikan 100%.

Hasil persentase pada tiap kategori jawaban digunakan untuk menggambarkan kecenderungan respon peserta didik pada setiap indikator. Kecenderungan ini diinterpretasikan secara deskriptif, misalnya dengan menyoroti kategori jawaban yang memiliki persentase terbesar untuk menunjukkan sikap atau kecenderungan peserta didik terhadap pernyataan tersebut.

Tabel 3. 14 Interpretasi Data Profil Metakognisi

% Profil Strategi Metakognisi (%PSM)	Interpretasi data
$0 < PSM \le 20$	Sangat Buruk
$20 < PSM \le 40$	Buruk
$40 < PSM \le 60$	Cukup Baik
$60 < PSM \le 80$	Baik
$80 < PSM \le 100$	Sangat Baik
	(II:11: 0 M 2022)

(Hildayati & Mayasari, 2023)

3.5.4 Analisis Ukuran Dampak Strategi metakognisi OPMER dalam Pembelajaran Inkuiri Terbimbing terhadap kemampuan pemecahan masalah peserta didik

3.5.4.1 Uji Normalitas

Uji normalitas dilakukan untuk melihat sebaran data pada suatu kelompok apakah terdistribusi secara normal atau tidak. Jika data terdistribusi normal, maka analisis data menggunakan statistik parametrik. Sedangkan, jika data tidak terdistribusi secara normal, maka analisis data menggunakan statistik nonparametrik. Dalam penelitian ini karena sampel penelitian 63 orang, maka digunakan uji normalitas Kolmogorov-Smirnov menggunakan IBM SPSS ver. 27 dengan taraf signifikansi 5%. Jika taraf nilai signifikansi (Sig.) lebih besar dari 0,05 maka data terdistribusi normal. Sedangkan, jika nilai signifikansinya kurang dari 0,05, maka data tidak terdistribusi secara normal.

3.5.4.2 Uji Homogenitas

Uji homogenitas dilakukan untuk mengetahui apakah data dalam suatu kelompok bersifat homogen atau tidak dan atau untuk menguji kesamaan pada beberapa bagian sampel. Hal ini dilakukan agar generalisasi terhadap populasi dapat dilakukan. Adapun uji homogenitas pada penelitian ini dilakukan dengan Uji Levene menggunakan bantuan IBM SPSS ver. 27 dengan taraf signifikansi 5%. Jika taraf nilai signifikansi (Sig.) lebih besar

dari 0,05 maka varians dikatakan homogen. Sedangkan, jika nilai signifikansinya kurang dari 0,05, maka varians dikatakan tidak homogen.

3.5.4.3 Uji Mann Whitney

Jika data pada kedua kelompok tidak terdistribusi normal, maka analisis data dilakukan menggunakan statistik nonparametrik. Teknik yang digunakan adalah uji hipotesis dengan uji *mann whitney* untuk mengetahui ada atau tidaknya dampak Penerapan Strategi Metakognisi OPMER dalam Pembelajaran Inkuiri Terbimbing terhadap kemampuan pemecahan masalah peserta didik. Adapun uji *mann whitney* diujikan pada data *posttest* kelas eksperimen dan kelas kontrol untuk diamati perbedaannya. Dasar pengambilan keputusan uji *mann whitney* ini adalah sebagai berikut.

i. $Jika t_{hitung} < t_{tabel}$; $Maka H_0 diterima$

 H_0 : Tidak terdapat dampak strategi metakognisi OPMER dalam pembelajaran inkuiri terbimbing terhadap kemampuan pemecahan masalah peserta didik.

ii. $Jika t_{hitung} < t_{tabel}$; $Maka H_a diterima$

 H_a : Terdapat dampak strategi metakognisi OPMER dalam pembelajaran inkuiri terbimbing terhadap kemampuan pemecahan masalah peserta didik.

Uji *mann whitney* dilakukan menggunakan bantuan IBM SPSS ver. 27 dengan taraf signifikansi 5%. Jika taraf nilai signifikansi (Sig.) lebih besar dari 0,05 maka tidak terdapat dampak strategi metakognisi OPMER dalam pembelajaran inkuiri terbimbing terhadap kemampuan pemecahan masalah peserta didik. Sedangkan, jika nilai signifikansinya kurang dari 0,05, maka terdapat dampak strategi metakognisi OPMER dalam pembelajaran inkuiri terbimbing terhadap kemampuan pemecahan masalah peserta didik.

3.5.4.4 Uji Rosenthal's r

Karena, rumusan masalah penelitian ini bertujuan untuk mengetahui seberapa baik dampak penerapan strategi metakognisi OPMER dalam pembelajaran inkuiri terbimbing terhadap kemampuan pemecahan masalah

Yesi Puspita Sari, 2025

peserta didik, maka setelah uji hipotesis dengan uji *mann whitney*, dilakukan analisis lanjutan dengan uji rosenthal's rmenggunakan persamaan berikut

$$r = \frac{Z}{\sqrt{N}} \tag{3.3}$$

(Rosenthal, 1991)

Keterangan

r : ukuran efek Rosenthal

Z : Nilai statistik *Z* uji mann whitney

N : *Jumlah total responden*

Adapun nilai uji Rosenthal's r yang diperoleh, diinterpretasikan dengan tabel berikut.

Tabel 3. 15 Interpretasi Data *uji Rosenthal's r*

Nilai Rosenthal's r	Interpretasi Data
$0.10 \le r \le 0.29$	Rendah
$0.30 \le r \le 0.49$	Sedang
≥ 0,50	Tinggi

(Rosenthal, 1991)

3.5.5 Analisis Peningkatan Kemampuan Pemecahan Masalah Peserta Didik

Analisis peningkatan kemampuan pemecahan masalah peserta didik dapat digunakan dengan teknik analisis data N-Gain. Uji N-Gain dihitung berdasarkan nilai *pretest* dan *posttest* yang didapatkan peserta didik. Adapun uji N-Gain dapat dihitung depan rumusan sebagai berikut.

$$\langle g \rangle = \frac{\langle G \rangle}{\langle G \rangle_{maks}} = \frac{\langle S_f \rangle - \langle S_i \rangle}{100 - \langle S_i \rangle}$$
 (3.5)

(Hake, 1999)

Keterangan

 $\langle g \rangle$: rata – rata yang dinormalisasi

 $\langle G \rangle$: rata – rata gain yang aktual

 $\langle G \rangle_{maks}$: gain maksimum yang mungkin terjadi

 $\langle S_f \rangle$: rata – rata skor posttest

 $\langle S_i \rangle$: rata – rata skor pretest

Sedangkan analisis uji N-Gain diamati berdasarkan interpretasi data terhadap hasil nilai N-Gain.

Tabel 3. 16 Interpretasi Data Uji N-Gain

Nilai Gain	Interpretasi Data
$0.70 \le \langle g \rangle \le 1.00$	Tinggi
$0.30 \le \langle g \rangle \le 0.70$	Sedang
$\langle g \rangle \le 0.30$	Rendah

(Hake, 1999)

Analisis lanjutan terhadap peningkatan kemampuan pemecahan masalah dilakukan dengan menganalisis setiap indikator peningkatan kemampuan pemecahan masalah menggunakan hasil *pretest* dan *posttest* baik kelas kontrol dan kelas eksperimen dengan mengelompokkan jawaban *point* butir a untuk indikator PM-1 (Visualize the problem) dan PM-2 (describe the physics), jawaban point butir b untuk indikator PM-3 (plan a solution), jawaban point butir c untuk indikator PM-4 (execute the problem), dan jawaban point butir d untuk indikator PM-5 (evaluate the problem).

Adapun teknik analisis data yang digunakan adalah uji N-Gain untuk hasil *pretest* dan *posttest* setiap indikator dengan rumusan matematis 3.5 dan interpretasi data dengan Tabel 3.16.