Tri Seda Mulya, - and Muhammad Rizalul Wahid, - and Liptia Venica, - (2025) RANCANG BANGUN SISTEM PENGEREMAN REGENERATIF PADA MOTOR BLDC QS 2000 WATT DENGAN INTEGRASI PEMANTAUAN PEMULIHAN ENERGI. S1 thesis, Universitas Pendidikan Indonesia.
Abstract
Penelitian ini bertujuan untuk merancang dan membangun sistem pengereman regeneratif pada kendaraan listrik yang dilengkapi dengan fitur pemantauan dan analisis pola mengemudi guna mendukung efisiensi energi. Pendekatan yang digunakan adalah metode Research and Development (R&D) dengan model 3D (Define, Design, Develop). Sistem terdiri atas motor BLDC QS 2000 Watt, driver Votol EM100, sensor PZEM-017 dan ACS758, serta mikrokontroler Arduino Uno yang mengumpulkan dan mengirim data ke dashboard berbasis GUI Python. Estimasi state of charge (SoC) dilakukan menggunakan pendekatan linier untuk meningkatkan akurasi dan stabilitas data. Hasil pengujian menunjukkan bahwa sensor memiliki akurasi tinggi (99,8% untuk tegangan dan 94,97% untuk arus), serta sistem mampu menampilkan data real-time seperti kecepatan, tegangan, arus, SoC, dan status regenerasi. Proses klasifikasi pola mengemudi menggunakan machine learning mengidentifikasi bahwa kecepatan optimal 22,23 km/jam memberikan konsumsi energi terendah sebesar 0,12 Wh. Sistem ini berpotensi mendukung manajemen energi cerdas yang adaptif terhadap perilaku pengguna, memperpanjang masa pakai baterai, serta mengurangi konsumsi energi secara berkelanjutan. ----- This research aims to design and build a regenerative braking system for electric vehicles equipped with driving pattern monitoring and analysis features to support energy efficiency. The approach used is the Research and Development (R&D) method with a 3D model (Define, Design, Develop). The system consists of a 2000-watt BLDC motor, a Votol EM100 driver, PZEM-017 and ACS758 sensors, and an Arduino Uno microcontroller that collects and sends data to a Python GUI-based dashboard. Battery state of charge (SoC) estimation is performed using a linear approach to improve data accuracy and stability. Test results show that the sensors have high accuracy (99.8% for voltage and 94.97% for current), and the system can display real-time data such as speed, voltage, current, SoC, and regeneration status. The driving pattern classification process using machine learning identified that the optimal speed of 22.23 km/h provides the lowest energy consumption of 0.12 Wh. This system has the potential to support adaptive smart energy management based on user behavior, extend battery life, and reduce energy consumption in a sustainable manner.
![]() |
Text
S_MKB_2102974_Title.pdf Download (473kB) |
![]() |
Text
S_MKB_2102974_Chapter 1.pdf Download (251kB) |
![]() |
Text
S_MKB_2102974_Chapter 2.pdf Restricted to Staf Perpustakaan Download (690kB) |
![]() |
Text
S_MKB_2102974_Chapter 3.pdf Download (811kB) |
![]() |
Text
S_MKB_2102974_Chapter 4.pdf Restricted to Staf Perpustakaan Download (979kB) |
![]() |
Text
S_MKB_2102974_Chapter 5.pdf Download (200kB) |
![]() |
Text
S_MKB_2102974_Appendix.pdf Restricted to Staf Perpustakaan Download (781kB) |
Item Type: | Thesis (S1) |
---|---|
Additional Information: | https://scholar.google.com/citations?user=XJGryYsAAAAJ&hl=id ID Sinta Dosen Pembimbing : Muhammad Rizalul Wahid : 6780434 Liptia Venica : 6779029 |
Uncontrolled Keywords: | kendaraan listrik, sistem pengereman regeneratif, real-time dashboard, state of charge (soc), clustering pola berkendara electric vehicle, regenerative braking, real-time dashboard, state of charge (soc), driving pattern clustering |
Subjects: | T Technology > TA Engineering (General). Civil engineering (General) |
Divisions: | UPI Kampus Purwakarta > S1 Mekatronika dan Kecerdasan Buatan |
Depositing User: | Tri Seda Mulya |
Date Deposited: | 13 Aug 2025 01:32 |
Last Modified: | 13 Aug 2025 01:32 |
URI: | http://repository.upi.edu/id/eprint/135460 |
Actions (login required)
![]() |
View Item |