CHAPTER III METHODOLOGY

3.1 Research Method and Research Design

a. Research Method

The method used in this research is the Quasi Experiment. The design was a pretest-posttest non-equivalent control group design (Creswell &Creswell, 2018). In this study, two groups were observed: the experimental group through the renewable energy project and the control group using conventional methods. The differences in learning between the two research groups explained in Table 3.6.

b. Research Design

This research used the pretest-posttest non-equivalent control group design. This design shows in the table below:

Table 3. 1 Research Design of Non-Equivalent Control Group

Class	Pre-test	Experiment	Post-test
Experiment	O_1	X	O_2
Control	O_1	-	O_2

O1: Pre-test of students' sustainability action

X: Implementation of the use of STEM-ESD learning on renewable energy project

-: Regular learning methods using self-directed learning through completion of worksheets

O2: Post-test of students' creativity and sustainability action

3.2 Population and Sample

This research taken place at one of Bogor Junior High Schools, and the curriculum that is especially suitable for this research is Indonesia 2013 Curriculum. The samples in this study were two classes consisting of one experimental and one control class. The sample selection for this study used non probability sampling techniques specifically convenience sampling technique. Convenience sampling technique used because the number of classes available in the target school is limited, which is only 2 classes. So, both of the class should be a sample since this study design encompasses experimental and control class.

Since both of classes were said to have the same level of achievement so both classes have the same probability for being choosen as experimental and control.

3.3 Assumptions

- a. The STEM-ESD based learning model offers students numerous opportunities to progress their comprehension of the crucial role of environmental protection, recognize the effects of human activity on the natural environment, cultivate a sense of accountability for the effects of their own actions on the environment, and look for appropriate actions to environmental problems. The STEM-ESD learning also provide the opportunities for students to influence society and organize community actions.
- b. The STEM-ESD based learning exposed students to activities that can develop their skills for coming up with original ideas, coming up with novel approaches to problems, considering ecological concerns from various viewpoints so then students can choose proper solution, developing simple concepts into more sophisticated and advanced ones, working in groups to accomplish common objectives, as well as ability evaluating and revising ideas or solutions.

3.4 Hypothesis

The hypothesis of Sustainability Action as follows:

H0: There is no significant difference of students' sustainability action between STEM ESD learning class and conventional learning class

H1: There is a significant difference of students' sustainability action between STEM ESD learning class and conventional learning class

3.5 Research Instrument

Research data were collected with various instruments as seen in Table 3.2.

Table 3. 2 The Research Instrument

No	Data Needed	Instrument
1.	Sustainability Action	Questionnaire
2.	Creativity	Rubric

3.5.1 Questionnaire of Students' Sustainability Action

Instrument for sustainability action was adapted based on Environmental Citizenship Questionnaire (ECQ) with 3 main indicators which are past and present action, future action, and competency within 2 dimension that are individual and collective dimensions (Hadjichambis &Paraskeva-Hadjichambi, 2020). The instrument developed by integrating ECQ indicator with ESD learning goals in cognitive, socio-emotional, and behavior aspects. Items are the developed in the form of 4-likert scale that shown the level of students' frequency of action (past and present action), students' willingness to take action in the future (future action), and students' ability to take action (compentency). The indicator mapping of initial sustainability action instrument can be seen in Table 3.3.

Table 3. 3 The Initial Mapping for Sustainability Action Instrument

Action Sub-Topic Clean		ESD Learning Goals			
Indicator and Affordable		Cognitive	Socio-Emotional	Behavioral	
	Energy				
Past, Present,	Energy Production,	1,2	3,4,5,6	7,8	
and Future	Usage and its Impact				
Action	Energy Efficiency	10,11	12,13,14,15	16,17,18	
	Renewable and	19,20	21,22,23,24	25,26,27	
	Sustainable Energy				
Competencies	Energy Production,	28,29	30,31	32,33	
	Usage and its Impact				
	Energy Efficiency	34,35	36,37	38,39	
	Renewable and	40,41	42,43	44,45	
	Sustainable Energy				

Validity of Sustainability Action Instrument

Validity pertains to the degree of precision, practicality, suitability, and importance of a certain outcome. Validity is the process of assessing whether a research instrument can actually measure the things that it is intended to test. Reliability refers to a consistency research results using various research methods in conditions (places and time) are different. The statements for the questionnaire of students' action then tested for the validity through correlations analysis and reliability through reliability analysis. If the Sig.2-Tailed result of the

questionnaire statement is less than 0.05 and Cronbach's alpha showed more than 0.06, then the statement categorized as valid and reliable. The result of validity and reliability test for all statements served in Table 3.4. While table of complete validity and reliability originally from SPSS can be seen in Appendix 1 and 2.

Table 3. 4 Recapitulation of Validity and Reliability Result of Past, Present,
Future Action

Item	Validity			Reliability	Int	Notes	New Item
Number	Sig. (2-ta	ailed)		Cronbach's			Number
	Past	Present	Future	Alpha			
	Action	Action	Action				
1	0.685	0.009	0.028	0.915	NOT	NOT	
				Reliable	VALID	USED	
2	0.013	0.004	0.006		VALID	USED	1
3	0.156	0.001	0.009		NOT	NOT	
					VALID	USED	
4	0.000	0.000	0.000		VALID	USED	2
5	0.005	0.000	0.001		VALID	USED	3
6	0.418	0.151	0.076		NOT	NOT	
					VALID	USED	
7	0.001	0.003	0.012		VALID	NOT	
						USED	
8	0.000	0.000	0.003		VALID	USED	4
9	0.027	0.041	0.050		VALID	NOT	
						USED	
10	0.015	0.051	0.015		VALID	USED	5
11	0.083	0.176	0.027		NOT	NOT	
					VALID	USED	
12	0.010	0.015	0.047		VALID	USED	6
13	0.000	0.001	0.006		VALID	USED	7
14	0.002	0.001	0.137		NOT	NOT	
					VALID	USED	
15	0.001	0.000	0.001		VALID	USED	8
16	0.000	0.000	0.000		VALID	NOT	
						USED	

Item	Validity			Reliability	Int	Notes	New Item
Number	Sig. (2-t	ailed)		Cronbach's			Number
	Past	Present	Future	Alpha			
	Action	Action	Action				
17	0.162	0.106	0.014	_	NOT	NOT	
					VALID	USED	
18	0.417	0.156	0.005		NOT	NOT	
					VALID	USED	
19	0.029	0.051	0.040		VALID	USED	9
20	0.050	0.282	0.300		NOT	NOT	
					VALID	USED	
21	0.035	0.005	0.042		VALID	USED	10
22	0.268	0.187	0.395		NOT	NOT	
					VALID	USED	
23	0.054	0.049	0.005		VALID	USED	11
24	0.048	0.013	0.021		VALID	USED	12
25	0.010	0.111	0.237		NOT		
					VALID		
26	0.622	0.836	0.725		NOT		
					VALID		
27	0.025	0.018	0.039		VALID		

In addition to past, present, and future action indicators, the competency indicators were also tested for student validity and obtained validity and reliability results data as attached in table 3.5.

Table 3. 5 Validity and Reliability Result for Competency Indicator

Item Number	Validity	Reliabilty	Int.	Notes	New Item
	Sig. (2-tailed)	Cronbach's			Number
		Alpha			
13	0.009	0.855	VALID	USED	13
14	0.001	Reliable	VALID	USED	14
15	0.000		VALID	USED	15
16	0.000		VALID	USED	16
17	0.009		VALID	USED	17
18	0.013		VALID	USED	18
19	0.001		VALID	USED	19
20	0.011		VALID	USED	20

Item Number	Validity	Reliabilty	Int.	Notes	New Item
	Sig. (2-tailed)	Cronbach's			Number
		Alpha			
21	0.003		VALID	USED	21
22	0.000		VALID	USED	22
23	0.002		VALID	USED	23
24	0.001		VALID	USED	24
25	0.001		VALID	USED	25
26	0.000		VALID	USED	26
27	0.006		VALID	USED	27

Based on the validity results above, the final instrument consists of 12 statements that are valid and used out of 27 statements made for indicators of past, present, and future actions. While for competency indicators all statements made are valid and used. New students' action instrument mapping can be seen in Table 3.6 and for full instruments of students' sustainability action respective to SDGs point 7th "Clean and Affordable Energy served in attachment 3.

Table 3. 6 Final Mapping for Sustainability Action Instrument

Action	Sub-Topic Clean	ESD Learning Goals			
Indicator	and Affordable	Cognitive	Socio-Emotional	Behavioral	
	Energy				
Past, Present,	Energy Production,	1	2,3	4	
and Future	Usage and its Impact				
Action	Energy Efficiency	5	6,7	8	
	Renewable and	9	10,11	12	
	Sustainable Energy				
Competencies	Energy Production,	13,14	15,16	17	
	Usage and its Impact				
	Energy Efficiency	18,19	20,21	22	
	Renewable and	23,24	25,26	27	
	Sustainable Energy				

3.5.2 Rubric of Students' Creativity

The students' Creativity in this study observed through the final product of renewable energy projects that students make. The rubric used is Creative Product Analysis Matrix (CPAM) with 3 creative dimensions provided are novelty,

resolution, and elaboration. The highest score is 3 and the lowest score is 1 (Besemer, 1998). This description of each criteria and score then constructed in Bahasa Indonesia and validate through the expert judgement. The initial rubric of creativity can be seen in Table 3.7.

Table 3. 7 Creativity Instrument before Revision

Creative	Criterion	Score		
Dimension		1	2	3
Novelty	Original	Produk sebagian	Produk	Ide produk berasal
		besar	menggunakan	dari pemikiran
		menggunakan	temuan	siswa sendiri
		temuan	sebelumnya	
		sebelumnya	sebagai ide	
		sebagai ide	mereka, tetapi	
			terdapat modifikasi	
			pada produk	
	Surprise	Produk ini tidak	Produknya punya	Produk
		mempunyai efek	efek kejutan,	memberikan efek
		kejutan karena	walaupun	kejutan karena
		produknya sama	produknya beda	produknya
		dengan yang sudah	dengan yang sudah	berbeda dengan
		ada dan umum	ada tapi masih	yang sudah ada
		digunakan.	sesuai ekspektasi	dan diluar
			umum	ekspektasi
Resolution	Valuable	Produk ini tidak	Produk ini dibuat	Berharga, produk
		dibuat	menggunakan	ini dibuat
		menggunakan	bahan daur ulang	menggunakan
		bahan daur ulang	tetapi	bahan daur ulang
		dan membutuhkan	membutuhkan	dan membutuhkan
		biaya tinggi	biaya tinggi	biaya rendah
	Useful	Produk dapat	Produk dapat	Produk dapat
		digunakan sekali	digunakan terus	digunakan terus
		saja	menerus dengan	menerus tanpa
			persyaratan	persyaratan apa
			tertentu	pun
	Logical	Fitur produk tidak	Product features	Fitur produk
		menjawab tujuan	answer the	menjawab tujuan

Creative	Criterion	Score		
Dimension		1	2	3
		dan tidak	purposes but not	yang berdasarkan
		berdasarkan	based on the	konsep
		konsep	concept	
	Understandable	Produknya tidak	Produk dapat	Produk mudah
		mudah dipahami	dipahami oleh	dipahami oleh
		oleh semua orang	orang yang	semua orang
			memiliki latar	
			belakang	
			pengetahuan	
			terkait	
Elaboration	Elegant	Produknya dibuat	Produknya dibuat	Siswa berusaha
		dengan baik	dengan baik	memberikan
			dengan desain	desain produk
			yang menarik	yang menarik
				dengan
				menggunakan
				beberapa bahan
	Well Crafted	Produk ini dibuat	Produknya dibuat	Produknya dibuat
		dengan kualitas	dengan kualitas	dengan kualitas
		yang sangat	buruk	yang baik
		rendah		
	Organic	Produk disusun	Produk disusun	Produk disusun
		dengan	dengan	menggunakan
		menggunakan	menggunakan	bahan-bahan yang
			bahan yang tidak	• •
			lengkap dan	0
			digunakan cukup	•
			sesuai dengan	fungsinya
		fungsinya	fungsinya	

From the expert judgment the rubric has several revisions, for the Original and Surprise criteria, needs to be differentiated more clearly. For Understandable criterion, the way to assess someone's understanding of how the product works must be clearly measurable. Last, for the well-crafted criterion that highlight the product's quality should be measure by the ability of products to work well. For

overall, the description must not be biased and must be understandable to the assessor. Expert judgement form can be seen in appendix 15. Fixed rubric of creativity product used in this research can be seen in Table 3.8.

Table 3. 8 The Instrument of Creativity after Revision

Indicator	Criteria		Description	
		1	2	3
Novelty	Original	Ide produk	Ide produk berasal	Ide produk benar
		terinsipirasi dari	dari karya orang	benar baru dar
		karya orang lain	lain sebelumnya,	murni berasal dar
		yang sudah ada	namun ada sedikit	pemikiran anggota
			perubahan dari ide	kelompok
			aslinya	
	Surprise	Produk terlihat	Produk cukup keren	Produk sanga
		biasa saja karena	karena ada sedikit	keren kerena ama
		mirip dengan	perbedaan dari	berbeda dengar
		produk yang	produk yang sudah	produk yang telah
		sudah ada	ada	ada
Resolution	Valuable	Produk dibuat	Produk dibuat	Produk dibua
		dengan bahan	dengan campuran	hanya dengar
		bahan yang mahal	dari bahan yang	bahan daur ulang
		dan bukan daur	mahal dan bahan	dengan hargo
		ulang	daur ulang	terjangkau
	Useful	Produk hanya	Produk bisa	Produk bisa
		bisa digunakan	digunakan berkali-	digunakan
		sekali	kali dengan	berkali-kali tanpa
			beberapa syarat	syarat
	Logical	Produk bukan	Produk merupakan	Produk
		solusi dari	solusi dari	merupakan solus
		permasalahan	permasalahan	dari
		energi dan tidak	energi namun tidak	permasalahan
		sesuai konsep IPA	sesuai konsep IPA	energi dan sesua
				konsep IPA
	Understandable	Cara kerja produk	Cara kerja produk	Cara kerja produk
		sulit dimengerti	hanya dimengerti	mudah dimengert
			oleh sebagian	untuk semua orang
			orang	

Indicator	Criteria	Description		
		1	2	3
Elaboration	Elegant	Produk	Produk	Produk
and		diselesaikan	diselesaikan	diselesaikan
Synthesis		tanpa dihias dan	dengan tampilan	dengan tampilan,
		diwarnai	warna yang cukup	hiasan, warna
			baik	yang menarik
	Well Crafted	Produk tidak	Produk bekerja	Produk bekerja
		bekerja dengan	dengan baik namun	dengan baik dan
		baik dan	masih harus ada	semestinya
		semestinya	yang diperbaiki	
	Organic	Komponen produk	Komponen produk	Komponen produk
		tidak lengkap dan	tidak lengkap	lengkap dan
		tidak gunakan	namun digunakan	digunakan sesuai
		sesuai fungsi	sesuai fungsi	fungsi

3.6 Research Procedure

3.6.1 Preparation Stage

Several pre-research activities are being carried out throughout the preparation stage. Early initiatives involved developing research instruments such as creativity and sustainability action questionnaires. The instrument was examined by the lecturer and proceeded through numerous revision rounds before being checked for legibility, which was followed by validity and reliability testing.

This includes the development of research equipment for use in teaching and learning activities. Learning designs in the form of lesson plan, learning resources, and student worksheets are the research equipment. Discussion with the teacher was also done to elaborate the lesson plan and worksheet application in classroom settings.

3.6.2 Implementation Stage

The implementation stage consists of several activities carried out as follows:

1) Giving the student pre-test

The pre-test is carried out during the first meeting, which is held in both the control and experimental classes. Before executing the renewable energy project on

organisms and their environment in the experimental class and before conventional learning in the control class, a pre-test was administered to measure students' beginning abilities connected to creativity and students' sustainable activity.

2) Treatment in class activity

After the pre-test was held for students, they started learning about the chapter of environmental issues. The experimental class was treated through renewable energy project activities, while the control class did not carry out the project activities. Full lesson plans for both classes are presented in Appendix 4 and 5. The differences in the implementation of the control class and the experimental class are showed in Table 3.9

Table 3. 9 Comparison of Learning Activities in Control and Experiment Class

Meeting	Experiment Class	Stages of Learning		Control Class
		STEM	Conventional	-
		Model	Model	
1.	STEM learning ESD	Formula-ting	Analyzing	Learning is carried out
	based through a	problem	problem	conventionally learning
	renewable energy			to support renewable
	project.			energy learning.
	1. Students recall their			1. Students recall
	knowledge about			their knowledge
	source of energy			about source of
	(Renewable and			energy
	Non-Renewable)			(Renewable and
	2. Students divide into			Non-Renewable)
	several groups to do			2. Students divide
	the worksheet in the			into several groups
	part of analyzing			to do the worksheet
	problem of "fossil			in the part of
	fuel dependency and			analyzing problem
	the effect"			of "fossil fuel

Meeting	Experiment Class	Stages of Learning		Control Class
		STEM	Conventional	-
		Model	Model	
	1. Students carry out	Think		dependency and
	group worksheet to			the effect"
	investigate and explore			
	the solution of the			
	problem given by using			
	technology			
2.	1. Students design	Design	Solution	1. Students carry out
	projects in		Formulation	group worksheet to
	renewable energy to			investigate and explore
	solve a problem			the solution of the
	(fully done outside			problem given by
	learning hours in			utilizing renewable
	the form of			energy
	assignments)			
	1. Students creates the	Create	_	
	actual product			
	(completed outside			
	learning hours)			
3.	1. Students conduct	Test	Draw	1. Students draw their
	testing of a product.		Solutions'	design for renewable
			Design	energy that has been
	2. Student get			chosen as the solution
	evaluation from peer			for energy problem
	and teacher			
	1. Students redesign the	Redesign	_	
	product by improving the			
	initial design (completed			
	outside learning hours			
	as assignment)			

Meeting	Experiment Class	Stages of Learning		Control Class
		STEM	Conventional	-
		Model	Model	
4.	1. Students disseminate	Socialization	Communicate	1. Students present their
	information related		the result	findings and get teacher
	to the products they			and peer's evaluation
	make through social			
	media			
	1. Students and teacher	Final	-	
	evaluate the final product	Presentation		
	through final			
	presentation			

3) Completion Stage

The completion of the treatment was marked by conducting a post-test. For sustainability action, both classes filled out the questionnaire as in the pre-test that was conducted before treatment. As for creativity, post-test data collection was only carried out in the experimental class through the product assessment by peers, teacher, and researcher. After all the required data was collected, the organized data analysis uses numerous tests, including the prerequisite and hypothesis tests. Data interpretation performs after the data evaluation. The investigation findings are then contrasted and evaluated in light of previous literature and research. As the final step, the discussion conclusion is the essence of the research form. Flowchart of research procedure can be seen in Figure 3.1 below.

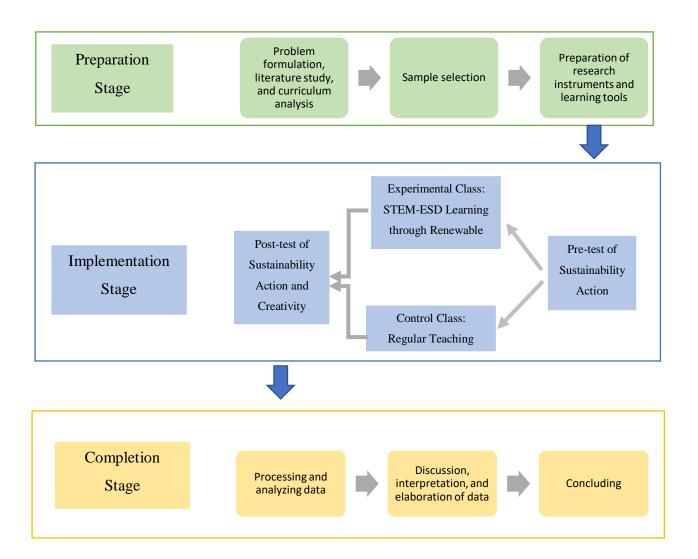


Figure 3. 1 Flowchart of Research Procedure

3.7 Data Analysis

3.7.1 Students Sustainability

Pre-test and post-test data already collected then converted in the form of numbers based on the Likert-scale. The lowest score for positive statement is 1 while the highest is 4, and the negative statement scored opposite. The series of tests that have been conducted to analyze students' sustainability actions are described as follows.

A. Pre-requisite (Normality and Homogenity)

Pre-requisite test conducted to see if the student sustainability action data that has been obtained has a normal distribution. From the normality tests that have been

carried out, the sig. value is 0.265 for control class pretest data, 0.668 for control class post test data, 0.955 for experimental class pretest data, and 0.955 for experimental class posttest data. Homogeneity test results for experimental and control class pretest data show a sig. value of 0.644 and 0.738 for post test data in both classes. All the following values are appeared to be greater than 0.05, hence it can be concluded that all the data of students sustainability action are normally and homogeny distributed.

B. Hypothesis Test

To answer the research question, data of students' sustainability action analyzed through hypothesis test. As stated before, data was normally distributed and homogeny. Hence, independent t-test conducted to determine the significant difference between experimental and control class results. Independent t-test as the form of parametric test can be used to analyze Likert scale response (Sullivan &Artino, 2013). The test was conducted using IBM SPSS by entering the average score of each child in the control and experimental classes as in the data tabulation available in the appendix 6-9.

C. Mean Score Calculation

Mean score of past, present, and future actions are calculated for each students. Then classified to three categories of shift which are decrease, increase, and constant. Then the number of students for each category calculated separately for control and experimental class. For each indicator of sustainability action which are past, present, future action, and competencies the elaboration is done by calculating the mean score of pre-test and post-test for both classes, and compared to see the shifting. Once the average score is obtained, the shift in students' actions from the past, present, and future is tracked. From the results of the data tabulation in appendix 8-9, 7 categories were found in the shift of student actions in time representation. The next analysis is calculated the number of students in each category. This data is then presented in percent form. The calculation of the mean score is also carried out to compare the sustainability score obtained by the experimental and control classes in each action indicator, namely past, present, future action and competence.

3.7.2 Students' Creativity

Analysis of creativity aspects begin with scoring students' product of renewable energy based on the rubric of creativity by peer, teacher and researcher. The lowest score for each criterion is 1, while the highest is 3. Two calculations were carried out in analyzing student creativity data as described below.

a. Mean Score Calculation

This calculation is done by averaging the scores from 3 assessments (peer, teacher, and researcher assessment) for each creativity dimension namely novelty, resolution, and elaboration and synthesis. Average score calculation is done to determine the score obtained by each group in the experimental class. In further elaboration of each dimension of creativity, the calculation of the average score obtained by each group on each criterion was also carried out. Full data tabulation of creativity mean score can be seen in appendix 10.

b. Conversion of Mean Score to Scale of 100

After all the required average scores are calculated, the scores are then converted from a scale of 1,2,3 to a scale of 100 through the formula.

$$NP = \frac{GS}{MS} \times 100\%$$

Where:

NP = Percentage Value

GS = Gained Score

MS = Maximum Score