ANALISIS DAN IMPLEMENTASI INFRASTRUKTUR KOMPUTASI AWAN BERBASIS WEB DENGAN PEMANFAATAN LOAD BALANCING DAN AUTO-SCALING PADA GOOGLE CLOUD PLATFORM

    Sahat Parulian, - (2024) ANALISIS DAN IMPLEMENTASI INFRASTRUKTUR KOMPUTASI AWAN BERBASIS WEB DENGAN PEMANFAATAN LOAD BALANCING DAN AUTO-SCALING PADA GOOGLE CLOUD PLATFORM. S1 thesis, Universitas Pendidikan Indonesia.

    Abstract

    Perkembangan teknologi dan informasi yang cepat memberikan pengaruh signifikan
    terhadap bidang jaringan, yang ditandai dengan hadirnya teknologi virtualisasi komputasi
    awan. Berdasarkan hasil survei Centre for Strategic and International Studies (CSIS)
    yang menyatakan sebanyak 69,8% lembaga di Indonesia belum menggunakan layanan
    komputasi awan di Tahun 2022 yang dapat mempengaruhi terhadap kinerja sebuah web
    terhadap server. Sebagai contoh nyata, berdasarkan laporan media massa digital, sebuah
    web yang dimiliki oleh Badan Usaha Milik Negara (BUMN) mengalami penurunan
    kinerja karena tingginya jumlah traffic terhadap server sehingga web tidak dapat diakses.
    Untuk menangani permintaan traffic tinggi tersebut akan menggunakan teknik load
    balancing dan auto-scaling dalam komputasi awan. Oleh sebab itu tujuan dari penelitian
    ini adalah mengetahui rancangan infrastruktur komputasi awan serta performa load
    balancing dan auto-scaling dalam implementasi web untuk mengatasi traffic tinggi dan
    rendah menggunakan Google Cloud Platform (GCP). Dengan metode penelitian yang
    diterapkan adalah Research and Development (R&D) menggunakan pendekatan ADDIE,
    meliputi lima tahap: Analysis, Design, Development, Implementation, dan Evaluation.
    Hasil penelitian menunjukkan bahwa rancangan infrastruktur awan memiliki parameter
    delay dan packet loss yang masuk kategori baik, serta throughput kategori cukup sesuai
    dengan standar TIPHON, dengan down-time pada auto-scaling yang konsisten sebesar 30
    detik. Penggunaan konfigurasi mesin virtual dalam penelitian ini terdiri dari 3 spesifikasi
    yang menunjukkan kemampuan yang baik dalam menangani traffic tinggi dan rendah.
    -----
    The rapid development of technology and information has a significant impact on
    the network field, which is marked by the presence of cloud computing virtualisation
    technology. The results of a survey conducted by the Center for Strategic and
    International Studies (CSIS) indicate that 69.8% of institutions in Indonesia have not
    utilized cloud computing services in 2022. This may have an adverse impact on the
    performance of a web application against a server. To illustrate, a web page owned by a
    state-owned enterprise (BUMN) has been observed to exhibit reduced performance due to
    the high volume of traffic on the server, resulting in unavailability of the web page. In
    order to meet the demands of high traffic volumes, load balancing and auto-scaling
    techniques will be employed within the cloud computing environment. The objective of
    this study is to ascertain the optimal design of a cloud computing infrastructure and the
    efficacy of load balancing and auto-scaling techniques in web implementation, with the
    aim of managing high and low traffic demands. The research method employed is that of
    Research and Development (R&D), utilising the ADDIE approach, comprising five
    stages: The analysis, design, development, implementation and evaluation stages were
    employed. The results demonstrate that the cloud infrastructure design exhibits delay and
    packet loss parameters that fall within the good category, as well as sufficient throughput
    in accordance with TIPHON standards. Furthermore, the auto-scaling down-time is
    consistent at 30 seconds. The virtual machine configurations in this study consist of three
    specifications that demonstrate an ability to handle high and low traffic.

    [thumbnail of S_SISTEL_2001345_Title.pdf] Text
    S_SISTEL_2001345_Title.pdf

    Download (822kB)
    [thumbnail of S_SISTEL_2001345_Chapter 1.pdf] Text
    S_SISTEL_2001345_Chapter 1.pdf

    Download (288kB)
    [thumbnail of S_SISTEL_2001345_Chapter 2.pdf] Text
    S_SISTEL_2001345_Chapter 2.pdf
    Restricted to Staf Perpustakaan

    Download (443kB)
    [thumbnail of S_SISTEL_2001345_Chapter 3.pdf] Text
    S_SISTEL_2001345_Chapter 3.pdf

    Download (374kB)
    [thumbnail of S_SISTEL_2001345_Chapter 4.pdf] Text
    S_SISTEL_2001345_Chapter 4.pdf
    Restricted to Staf Perpustakaan

    Download (1MB)
    [thumbnail of S_SISTEL_2001345_Chapter 5.pdf] Text
    S_SISTEL_2001345_Chapter 5.pdf

    Download (77kB)
    [thumbnail of S_SISTEL_2001345_Appendix.pdf] Text
    S_SISTEL_2001345_Appendix.pdf
    Restricted to Staf Perpustakaan

    Download (1MB)
    Official URL: https://repository.upi.edu/
    Item Type: Thesis (S1)
    Additional Information: https://scholar.google.com/citations?hl=en&user=2VnMAjsAAAAJ&view_op=list_works&gmla=AC6lMd_-2ooAn_MEYCmoVp_q5Nc6AS9sdY70--II6dl6ewt6_oulaS4PHTEWig8WX6xwcdDzx4Tp ID SINTA Dosen Pembimbing : Galura Muhammad Suranegara : 6703764 Ahmad Fauzi : 6122861
    Uncontrolled Keywords: Kata Kunci: Google Cloud Platform, Load Balancing, Auto-Scaling, Komputasi Awan, Down-time Keywords: Google Cloud Platform, Load Balancing, Auto-Scaling, Cloud Computing, Down-time
    Subjects: T Technology > T Technology (General)
    Divisions: UPI Kampus Purwakarta > S1 Sistem Telekomunikasi
    Depositing User: Sahat Parulian
    Date Deposited: 27 Aug 2024 07:29
    Last Modified: 27 Aug 2024 07:29
    URI: http://repository.upi.edu/id/eprint/121192

    Actions (login required)

    View Item View Item