BAB V

KESIMPULAN

5.1 Kesimpulan

Beberapa kesimpulan yang diperoleh dari penelitian ini antara lain:

- 1. Kestabilan termal dari ketiga garam hasil sintesis kestabilan termal garam hasil sintesis tertinggi dimiliki oleh 1,3-metil oktadesil 1,2,3-benzotriazolium bromida, (terdekomposisi pada suhu 325 °C), selanjutnya 1,3-metil heksadesil 1,2,3-benzotriazolium bromida (terdekomposisi pada suhu 313 °C) dan 1,3-metil oktil 1,2,3-benzotriazolium bromida (terdekomposisi pada suhu 235 °C).
- 2. Pemodifikasi organik garam benzotriazolium bromida dengan tiga variasi gugus N-Alkil yaitu oktil, heksadesil, dan oktadesil dapat digunakan pada proses penggantian kation dalam Na-bentonit hingga terbentuk organobentonit [MOBzt]-MMT, [MHDBzt]-MMT, dan [MODBzt]-MMT dengan cara merefluksnya selama 24 jam pada suhu 70-80 °C.
- 3. Kestabilan termal bentonit termodifikasi kation benzotriazolium berkisar antara 367-352°C. Dengan kestabilan tertinggi dimiliki bentonit termodifikasi 1,3-metil heksadesil 1,2,3- benzotriazolium (terdekomposisi pada suhu 367°C), selanjutnya bentonit termodifikasi 1,3-metil oktadesil 1,2,3- benzotriazolium (terdekomposisi pada suhu 362°C) dan bentonit termodifikasi 1,3-metil oktil 1,2,3-

benzotriazolium (terdekomposisi pada suhu 352°C). Hasil uji jarak antar lapisan Na-bentonit menunjukkan bahwa bentonit termodifikasi kation benzotriazolium mengalami penambahan jarak. Jarak antar lapisan pada Na-bentonit adalah 15,4 Angstrom, sedangkan bentonit termodifikasi oktadesil, oktil dan heksadesil benzotriazolium berturut-turut adalah 16.3 Angstrom; 16.7 Angstrom dan 15,7 Angstrom.

5.2 Saran

Untuk penelitian selanjutnya, diharapkan dapat dilakukan penelitian lanjutan untuk mengetahui pengaruh konsentrasi pemodifikasi dan waktu proses penggantian kation terhadap stabilitas termal dan jarak antar lapis bentonit termodifikasi kation benzotriazolium.