BAB V

PENUTUP

V.1 Kesimpulan

vektor V.

Dari pembahasan yang telah kita bahas pada bab-bab sebelumnya, kita dapat menyimpulkan beberapa hal:

- 1. Dengan menggunakan suatu pemetaan $f:V^n \to \mathbb{C}^n \otimes V$ di mana $f(v) = \sum_{finite} \varepsilon_i \otimes v_i$, $\forall v = (v_i) \in V^n$, $1 \le i \le n$ kita dapatkan bahwa $V^n \cong \mathbb{C}^n \otimes V$. Melalui isomorfisma tersebut, V^n dapat dipandang sebagai suatu ruang hasilkali tensor dari ruang kompleks n-tuple dengan ruang
- 2. Jika V suatu ruang vektor, dan $\mathbf{M}_{m,n}$ suatu ruang matriks atas ruang \mathbf{C} , maka $\mathbf{M}_{m,n}\left(V\right)\cong\mathbf{M}_{\mathbf{m},n}\otimes V\cong V\otimes\mathbf{M}_{\mathbf{m},n}$. Dengan demikian $\mathbf{M}_{m,n}\left(V\right)$ yaitu suatu ruang matriks dari ruang vektor V dapat dipandang sebagai suatu ruang hasilkali tensor dari ruang matriks atas ruang kompleks \mathbf{M}_{mn} dengan ruang vektor V.
- 3. Sifat-sifat dari ruang matriks sebagai suatu ruang hasilkali tensor terkait sifat-sifat pada ruang hasilkali tensor sebagai berikut:
 - a) Jika $\varepsilon_{i,j}\otimes v_0\in \mathbf{M}_{m,n}\otimes V$ dan $\varepsilon_{k,l}^{[p,q]}\otimes v_0\in \mathbf{M}_{p,q}\otimes V$, maka jumlah langsungnya:

 $\left(\varepsilon_{i,j}^{[m,n]}\otimes v_{0}\right)\oplus\left(\varepsilon_{k,l}^{[p,q]}\otimes v_{0}\right)=\left(\varepsilon_{i,j}^{[m+p,n+q]}\otimes v_{0}\right)+\left(\varepsilon_{m+k,n+l}^{[m+p,n+q]}\otimes v_{0}\right)\in\mathbf{M}_{m+p,n+q}\otimes V_{0}$ Dengan kata lain jumlah langsung dari ruang hasilkali tensor ruang matriks dan ruang vektor merupakan representasi dari jumlah langsung pada ruang matriks.

- b) Jika $\alpha \in \mathbf{M}_{m,p \, \mathbf{n}}$ $\beta \in \mathbf{M}_{q,n \, \mathbf{n}}$, $v_0 \in V$ dan $\gamma \in \mathbf{M}_{p,q}$ $\alpha(\gamma \otimes v_0)\beta = \alpha \gamma \beta \otimes v_0.$
- c) Diberikan suatu ruang matriks \mathbf{M}_r kemudian kita gunakan suatu $\alpha \in \mathbf{M}_{m}, \gamma \in \mathbf{M}_{m}(\mathbf{M}_{r}) \qquad \text{dan} \qquad \beta \in \mathbf{M}_{m} \qquad \text{diperole}$ $\alpha \gamma \beta = (\alpha \otimes I_{r}) \gamma (\beta \otimes I_{r}).$ $\mathbf{d}) \quad \text{Jika } v = \left[v_{i,j}\right] \in \mathbf{M}_{m,n}(V), \text{ maka } v = \sum \varepsilon_{i,j} \otimes v_{i,j} = \sum E_{i} * v_{i,j} E_{j}.$ identifikasi $\mathbf{M}_{\mathbf{m}}(\mathbf{M}_{r}) \cong \mathbf{M}_{\mathbf{m}} \otimes \mathbf{M}_{r}$

 - 4. Dengan menggunakan isomorfisma kanonik* dari ruang matriks $\mathbf{M}_{n}ig(Big(Hig)ig)$ pada ruang operator terbatas $Big(H^{n}ig)$, kita dapatkan struktur dari $\mathbf{M}_nig(Big(Hig)ig)$ sama dengan $Big(H^nig)$ (dalam arti norm operator dan operator adjoint di $\mathbf{M}_nig(B(H)ig)$ sama dengan di $B(H^nig)$). Karena $\mathbf{M}_{n}(B(H))$ dapat dipandang sebagai ruang operator terbatas sebagaimana $B(H^n)$ maka ruang matriks $\mathbf{M}_n(B(H))$ adalah suatu aljabar-C*.

V.2 Saran

Untuk pengembangan lebih lanjut, ada beberapa hal yang dapat penulis sarankan.

- 1. Suatu matriks n kali n atas ruang linear V dapat dipandang sebagai kombinasi linear dari bentuk $v = \sum \alpha_i \otimes v_i$, dengan $v_i \in V$, dan α_i matriks skalar n kali n. Kita harap itu akan menjadi gagasan yang lazim pada teori ruang Banach, siapapun yang menemukannya akan sangat berguna untuk mempelajari norm dari kombinasi linear $v = \sum \alpha_i \otimes v_i$, dengan α_i sebagai variabel acak.
- Karena pembahasan dalam tugas akhir ini masih terbatas ruang operator hasilkali tensor dari ruang Hilbert n-tuple, maka untuk pengembangan selanjutnya dapat dilakukan terhadap ruang operator hasilkali tensor dari ruang Hilbert yang lebih umum.
- dikaji lebih lanjut lagi sifat-sifat hasilkali tensor dari aljabar operator sebagai aljabar-C*. STAKAR

RPU