BAB III METODE PENELITIAN

3.1 Lokasi Penelitian

Lokasi yang dijadikan tempat penelitian yaitu pada Proyek pembangunan Bendungan Sadawarna, Desa Sadawarna Kec. Cibogo Kab. Subang, Provinsi Jawa Barat,

Gambar 3.1 Peta Lokasi Rencana Bendungan Sadawarna (Sumber : Google Earth)

3.2 Metode Penelitian

Jenis metode penelitian yang dipilih adalah deskriptif kuantitatif, adapun pengertian dari metode ini metode deskriptif kuantitatif menurut (Sugiono : 2009) adalah suatu metode yang berfungsi untuk mendeskripsikan atau memberi gambaran terhadap objek yang diteliti melalui data atau sample yang telah terkumpul sebagai mana adanya tanpa melakukan analisis dan membuat kesimpulan yang berlaku untuk umum.

Dengan kata lain jenis penelitian ini adalah studi kasus untuk menghitung stabilitas lereng dengan hasil nilai faktor keamanan, deformasi, pergesaran dan rembesan bendungan pada saat beroperasi. Dari hasil pengamatan dan pengujian tersebut diharapkan dapat diketahui pengaruh sudden drawdown terhadap stabilitas bendungan, selain itu juga dikaji bagaimana cara mengurangi dampak sudden drawdown terhadap stabilitas bendungan.

3.3 Data dan Sumber Data

Pengumpulan data-data yang mendukung dalam penelitian ini berupa data sekunder yang diperoleh pada proyek pembangunan bendungan sadawarna,berikut adalah data yang dibutuhkan :

- a) Data geometri Bendungan Sadawarna
- b) Parameter material timbunan yang digunakan pada saat perencanaan dan parameter berdasarkan hasil uji lab aktual di lapangan.
 Parameter tersebut terdiri dari : <u>Data uji sifat fisik timbunan :</u>

Data uji sirat fisik timbunan

- 1. Berat Volume (γ)
- 2. Berat Jenis (Gs)
- 3. Modulus Elastisitas (E)
- 4. Angka pori (e)
- 5. Kompresibilitas (mv)
- 6. Poisson Ratio (μ)
- 7. Kadar air tanah
- 8. Permeabilitas (k)

Data uji sifat mekanik timbunan (shear strength)

Data fisik dan mekanik material timbunan merupakan hasil uji lab yangtelah dilakukan pekerja proyek berdasarkan aktual di *quarry & borrow area*.

3.4 Populasi dan Sampling Teknik

Populasi data yang diambil pada penelitian ini adalah Bendungan Sadawarna yang secara administratif DAS Cipunagara berada di Kab. Subang dan Kab. Indramayu. Teknik pengambilan contoh di dalam penelitian ini digunakan teknik purposive sampling, yang berarti peneliti menentukan sendiri sample yang diambil sesuai dengan kebutuhan data yang di perlukan yang telah ditentukan sebelumnya.

3.5 Analisa Data

Penelitian ini lebih menitik beratkan pada teknik analisis data yang berhubungan langsung pada saat pengisian bendungan, sehingga akan ditarik kesimpulan yang dapat diterima secara logika dan baik untuk direalisasikan pada Proyek Pembangunan Bendungan Sadawarna.

Analisis stabilitas bendungan dengan pengaruh surut cepat dimana kodisi ini merupakan suatu kegagalan dalam stabilitas struktural pada bendungan yang terjadi akibat beberapa faktor diantaranya beban seimik yang menyebabkan kebocoran, dan pelepasan air darurat dari waduk (emergency release). Surut cepat terjadi sampai dimana tekanan air pori ekses pada tubuh bendungan mengalami dispasi hingga muka air di posisi lowest water level. Apabila waduk mengalami surut cepat sangat memungkinkan mempengaruhi parameter-parameter pada tubuh bendungan, maka akan dihasilkan tekanan air pori akses dan gaya-gaya rembesan yang tidak seimbang, serta mempengaruhi parameter kuat geser (shear strength).

Analisa data yang perlu dilakukan dalam penelitian ini disimulasikan dengan program komputer untuk mengetahui stabilitas dengan beberapa kondisi pada bendungan saat pasca konstruksi diantaranya :

- Analisis stabilitas bendungan kodisi pengisian bendungan pada elevasi ±78,3 m.
- Analisis stabilitas bendungan saat kondisi surut selama 25 hari sampai dengan elevasi ±70,5 m.
- 3. Analisis stabilitas bendungan kondisi ekstrim.

Selanjutnya disimulasikan dan dilakukan kalkulasi dengan software sebagai instrument pendukung dalam penelitian ini untuk mendapatkan hasil berupa nilai dari indikasi pada stabilitas bendungan, diantaranya yaitu :

1. Faktor keamanan dilakukan dengan Limit Equilibrium Method

menggunkan program Slope/W pada Geo Studio 2022.1.

- Analisis Deformasi menggunakan program Sigma/W pada Geo Studio 2022.1
- Analisis Rembesan dengan Limit Equilibrium Method melalui program Seep/W pada GeoStudio 2022.1
- 4. Analisa bahaya gejala pembuluh (piping action)

3.6 Instrument Penelitian

	Instrumen	Indikator	Tempat	KETERANGAN
Instrumen	Surat izin	a) Data Geometri	Proyek	Surat izin ditujukan kepada
Pengambilan		Bendungan.	Bendungan	instansi / badan perusahaan
Data		b) Data Sifat fisik	Sadawarna	kontaktor maupun
		Timbunan.		konsultan di proyek
		c) Data sifat		bendungan Sadawarna
		mekanik		
		timbunan (<i>shear</i>		
		strength)		
	Software	- MS.Word		Software yang digunakan
	Microsoft	- MS. Excel		untuk mengolah data,
	Office 2019	- Power Point	-	pembuatan laporan, dan
				pembuatan slide presentasi
				hasil.
	Program	- Geo Studio 2012		Program yang berperan
	Limit	(Slope/W.		untuk process running
	Equilibrium	Seep/W.		simulasi bendungan
	Methode	Sigma/W)	-	Sadawarna

Tabel 3.1 Instrument Penelitian

Instrumen	Printer dan	- Epson L360		Sebagai	media	yang
Hasil	Kertas	- Kertas A4		digunakan	untuk me	embuat
			-	draft akhir	hasil per	elitian
				berupa lapo	oran tugas	akhir.

3.7 Kerangka Berpikir

Secara garis besar rancangan penelitian yang akan dilakukan dalam penelitian Stabilitas Bendungan Sadawarna Pascakonstruksi dapat dilihat pada kerangka berpikir berikut.

Sehubungan dengan keamanan bendungan, yang diperlukan adalah pemahaman terhadap konsepsi keamanan bendungan dan peduli terhadap keamanan bendungan. Pembangunan bendungan Sadawarna selama beroperasi perlu ditinjau stabilitas terhadap keamanan bendungan. Salah satu keamanan yang diperhatikan adalah stabilitas keamanan struktur bendungan

Sehubungan dengan pemahaman terhadap konsepsi keamanan bendungan. Pembangunan Bendungan Sadawarna harus diimbangi dengan stabilitas keamanan terhadap struktur bendungan selamama beroperasi dalam upaya peduli terhadap keamanan bendungan

Stabilitas Tubuh Bendungan

Sadawarna Pasca Konstruksi

- a. Menganalisis stabilitas dan kondisi tubuh bendungan pada saat bendungan beroperasi
- b. Menganalisis nilai deformasi bendungan jika terjadi keruntuhan dalam ketiga kondisi pada saat bendungan beroperasi.
- c. Menganalisis besarnya rembesan pada tubuh bendungan dalam ketiga kondisi yang terjadi pada tubuh bendungan pada saat bendungan beroperasi.
- d. Menganalisis keamanan bendungan terhadap bahaya piping pada saat bendungan beroperasi.

HASIL DAN PEMBAHASAN

KESIMPULAN,IMPLIKASI,DAN REKOMENDASI

Arief Wahyudin, 2023 STABILITAS TUBUH BENDUNGAN SADAWARNA PASCA KONSTRUKSI Universitas Pendidikan Indonesia|repository.upi.edu|perpustakaan.upi.edu

3.8 Prosedur Penelitian

Arief Wahyudin, 2023 STABILITAS TUBUH BENDUNGAN SADAWARNA PASCA KONSTRUKSI Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

Gambar 3.3 Prosedur Penelitian

3.9 Uraian Prosedur Penelitian

Penelitian diawali dengan pengambilan data geometri Bendungan Sadawarna STA 0 + 340 dan data material timbunan berdasarkan data aktual dari *quarry & borrow area*. Data hasil uji lab di lapangan yang dibutuhkan sebagaiinput data pada simulasi penelitian ini adalah data *shear strength* (C, ϕ) sebagai data sifat mekanik material timbunan dan data sifat fisik material timbuanan yaitu berat volume (γ), berat jenis (Gs), modulus elastisitas (e), angka pori (e), kompresibilitas (mv), poisson ratio (μ), kadar air tanah,permeabilitas (k).

Setelah data material timbunan dan geometri bendungan didapatkan kemudian dilakukan simulasi uji stabilitas bendungan pasca konstruksi dengan kondisi pengisian bendungan elevasi 78,3,dan saat mengalami surut selama 25 hari pada elevasi 70,5. Simulasi ini dilakukan dengan metode *limit equilibrium method* (*GeoStudio 2022.1*). Selanjutnya dianalisis nilai faktor keamanan, besarnya deformasi, rembesan, dan analisis terhadap bahaya piping.

Hasilnya akan menjadi perbandingan antara beberapa kondisi pada saat bendungan beroperasi dengan kedua program tersebut beserta dicek syarat kriteria keamanan struktur bendungannya berdasarkan nilai faktor keamanan minimum yang telah distandarisasi oleh komisi keamanan bendungan (KKB). Jika hasilnya Tidak masuk dalam syarat kriteria maka dilakukan simulasi stabilitas ulang, dan jika Ya masuk dalam syarat kriteria keamanan strukturbendungan maka dilanjutkan dengan kesimpulan dan saran. Selesai.

3.9.1 Limit Euilibrium (Geostudio 2022.1)

- A. Simulasi SEEP/W
- a. Buka program GeoStudio
- b. Pilih Create a SEEP/W analyses
- c. Buat geometri bendungan dengan menggunakan Draw Regions

Gambar 3.4 Geometri Bendungan Sadawarna

- d. Buat sumbu X dan sumbu Y pada bidang gambar
- e. Klik *Set* lalu pilih *Axes*
- f. Isi box Axes Bottom X dengan nama Distance (m)
- g. Isi *box Axes Top* Y dengan nama *Elevation* (m)

📶 Sketch Axe	25		?	×			
Drag a rectang	gle to define the a	æs.					
	Axis Titles Distance						
Elevation	(m)	Eleva	ition				
	✓ Distance	e (m)					
🗹 Display	Axis Numbers	Font Size	: 26	~			
X-Axis		Y-Axis					
Min:	0 m	Min:	0 m				
Max:	250 m	Max:	90 m				
Incr. Size:	50 m	Incr. Size:	10 m				
🗹 Auto	Increment Size						
			Clos	se			

Gambar 3.5 Pengaturan Axes

i. Isi kolom-kolom tersebut sesuai kebutuhan, lalu klik OK makaakan muncul gambar seperti di bawah ini:

Gambar 3.6 Geometri Bendungan dengan Axes

j. Langkah selanjutnya adalah memasukkan material tubuh bendungan.

Parameter Material yang dibutuhkan yaitu:

- Vol. Water content at Saturation
- Coef. Of Vol. Compressibility (m_v)
- *K* (*Coef. Of Permeability*)

Berikut data-data yang akan dimasukkan:

NT	Uraian	γ sat	VWC	e	Е	mv	k
NO		kN/m ³			kPA	kPA	m/s
1	Zona 1 (Core)	17	0,4221	1,244	15882.353	0.000062	2,86E-08
2	Zona 2 (Filter)	18	0,62	0,01	25000	0.00004	3,70E-04
3	Zona 3 (Random)	17,5	0,2162	0,752	30000	0.00003	5,11E-06
4	Batu Pasir Tufan Coklat Muda	14.95	0.1105	0.292	100000	0.00001	6.00E-06
5	Batu Pasir Abu-abu	18.26	0.203	0.547	100000	0.00001	6.00E-06
6	Napal Tufan	17.19	0.257	0.699	100000	0.00001	6.00E-06

Tabel 3.2 Material Tubuh Bendungan Untuk *Input* Program SEEP/W

Define Materials			σ	×
Materials				
Nane	Color		Add	
Zona Random				
Zona Inii Kedap			Delet	e
Iona Filter				
Nootoe Isoat X da Caist M da C. CM. Mit MM				
Batu Pasir Tufan Coklat Nuda			Assigne	d
Batu Pasir Tufan Abu-abu				
Name:	Color:			
Zona Fiter		Set		
Hydraulic				
Naterial Model: Saturated / Unsaturated ~				
Vol. Water Content Fri: Filter 🗸 📊				
Hyd. Conductivity Pri: Pilter v				
Ky/Ko/Ratio: 1 Rotation: 0 *				
Artituation PMP: 0 MP8				
Undo 🕷 Redo 🕷	Show legend Pr	roperties	Close	

Gambar 3.7 Material Properties Tubuh Bendungan

k. Material tubuh bendungan selanjutnya dimasukkan kedalam geometri dengan cara memilih region sesuai tempat material itu.

- 1. Buat *Boundary Conditions* **L**. Draw-boundary condition-add
- m. Pilih Head (H) pada Type Boundary
- n. Action yaitu tinggi muka air waduk dari titik datum yang dibuat. Pada hulu bendungan tinggi muka air yaitu 78.3 meter dari titik 0.0 untuk TMA +78.3

Oefine Boundary C	onditions	? ×
BC Category:	All ~	
All Boundary Conditions		
All Boundary Conditions Name Elevasi 78,3 Potential Seepage Fac Zero Pressure	e Hydraulic Hydraulic	Add Delete Assigned
Undo 💌 R	edo 🛛 🕶	Close

Gambar 3.9 Boundary Condition

o. Klik daerah yang akan dibatasi. Boundary condition-klik

Gambar 3.10 Assign Boundary Condition

p. Buat section nilai rembesan yang akan ditinjau dengan cara Draw-Flux

Sections

Gambar 3.11 Flux Section

- q. Selanjutnya yaitu melakukan kalkulasi untuk mengetahui besarnya rembesan yang terjadi. Klik *Solve Manager* , lalu klik *Start*.
- r. Klik *Draw Flux Label*, lalu klik pada *Flux Section* yang sebelumnya telah dibuat, maka akan muncul besarnya rembesan yang melalui tubuh bendungan seperti gambar di bawah ini:

Gambar 3.12 Pore Water Pressure dan Besar Rembesan

B. Simulasi SLOPE/W

Langkah-langkah stabilitas menggunakan Slope/W dapat diuraikan sebagai berikut:

- a. Buka Keyin Analyses
- b. Setelah itu, klik analisis Seep/w yang akan dianalisis keamanannya

79

c. Akan muncul kotak dialog kemudian pilih Slope/w- Limit Equilibrium,

seperti gambar dibawah ini :

🎱 1. Stabilitas Sadawarna Elev 78,3 2	Gefine Project					_	□ × □
File Edit View Define Draw				[- Description:		
0 🗃 🖬 🧔 🖬 👘	Analyses:	Add 🔻 Delete	Name:	0.1.1 LERENG HILLR STA 340	lanpe		^
		Clone	> <u>Parent</u> :	0. STA 340 Elv 78,3			~
		SLOPE/W Analysis	> Limit Equilib	rium	~		
Project Explorer		 SEEP/W Analysis 	> SIGMA/W St	ress			
Define Project	📐 0.1.2 LERENG HILIR STA 340 GEMPA 2017 OBE (Y/H =	SIGMA/W Analysis	QUAKE/W St	ress			
Cadawarea Elev 78 2 2022 1	0.1.3 LERENG HILIR STA 340 GEMPA 2017 OBE (Y/H = 0.1.3 LERENG HILIR STA 340 GEMPA 2017 OBE (Y/H =	OUAKE ON Assession	QUAKE/W N	ewmark Deformation	~ <u>T</u> im	e: (last)	~
Geometry	0.1.5 LEPENG HILLR STA 340 GEMPA 2017 OBE (1/H =	QUARE/ W Analysis	Uses results	from the parent analysis.			
TA 340 Elv 78,3 [0 sec]	0.2.1 LERENG HILIR STA 340 GEMPA 2017 MDE (Y/H=	IEMP/W Analysis	>				
0.1.1 LERENG HILIR STA 340 Tanpa		CTRAN/W Analysis	> Staged Pseudour	tatic analysis:			
0.1.2 LERENG HILIR STA 340 GEMPA 20	📐 0.2.3 LERENG HILIR STA 340 GEMPA 2017 MDE (Y/H=	AIR/W Analysis	> (none)	Value analysist			
0.1.3 LERENG HILIR STA 340 GEMPA 20	0.2.4 LERENG HILIR STA 340 GEMPA 2017 MDE (Y/H=	1) (o sec)	(1012)				
0.1.5 LERENG HILLIR STA 340 GEMPA 2.	0.3.1 LERENG HULU STA 340 TANPA GEMPA [0 sec]		Partial Eactors:				
0.2.1 LERENG HILLIR STA 340 GEMPA 20	0.3.2 LERENG HULU STA 340 GEMPA 2017 OBE (Y)H=L	0,25) [0 sec]	(none)	~			
0.2.2 LERENG HILIR STA 340 GEMPA 20	 0.3.4 LERENG HULU STA 340 GEMPA 2017 OBE (Y)H=0 	0.75) [0 sec]					
0.2.3 LERENG HILIR STA 340 GEMPA 20	0.3.5 LERENG HULU STA 340 GEMPA 2017 OBE (Y/H=1	1) [0 sec]	Unit Weight of V	/ater: 9.807 kN/m ³			
0.2.4 LERENG HILIR STA 340 GEMPA 20	📐 0.4.1 LERENG HULU STA 340 GEMPA 2017 MDE (Y/H=0	0,25) [0 sec]					
0.3.1 LERENG HULU STA 340 TANPA GE	📐 0.4.2 LERENG HULU STA 340 GEMPA 2017 MDE (Y/H=0	0,5) [0 sec]					
0.3.2 LERENG HULU STA 340 GEMPA 20	0.4.3 LERENG HULU STA 340 GEMPA 2017 MDE (Y/H=0	0,75) [0 sec]					
0.3.4 LERENG HULU STA 340 GEMPA 20	0.4.4 LERENG HULU STA 340 GEMPA 2017 MDE (Y/H=) 1 LEEENG HULU STA 340 Tanna Compa (Geogle)	1) [0 sec]					
0.3.5 LERENG HULU STA 340 GEMPA 20	1.2 LERENG HILLIR STA 340 GEMPA 2017 ORE (V/H = 0	25) [0 sec]					
0.4.1 LERENG HULU STA 340 GEMPA 20	1.3 LERENG HILIR STA 340 GEMPA 2017 OBE (Y/H = 0	,5) [0 sec]					
0.4.2 LERENG HULU STA 340 GEMPA 20	1.4 LERENG HILIR STA 340 GEMPA 2017 OBE (Y/H = 0	,75) [0 sec]					
0.4.3 LERENG HULU STA 340 GEMPA 20	🗽 1.5 LERENG HILIR STA 340 GEMPA 2017 OBE (Y/H = 1) [0 sec]					
0.4.4 LERENG HULU STA 340 GEMPA 20	2.1 LERENG HILIR STA 340 GEMPA 2017 MDE (Y/H= 0,	,25) [0 sec]					
1.1 LEREING HILLIR STA 340 Tanpa Gemp 1.2 LEDEING HILLIR STA 340 GEMPA 2011	2.2 LERENG HILIR STA 340 GEMPA 2017 MDE (Y)H= 0,	.5) [0 sec]					
1.3 LERENG HILIR STA 340 GEMPA 201	2.3 LEREING HILLIK STA 340 GEMPA 2017 MDE (Y/H= 0,	,/5) [U SEC]					
1.4 LERENG HILIR STA 340 GEMPA 201	3.1 LERENG HULU STA 340 TANPA GEMPA [0 sec]	/ [o sec]					
1.5 LERENG HILIR STA 340 GEMPA 201	3.2 LERENG HULU STA 340 GEMPA 2017 OBE (Y/H=0,2	25) [0 sec]					
2.1 LERENG HILIR STA 340 GEMPA 201	📐 3.3 LERENG HULU STA 340 GEMPA 2017 OBE (Y/H=0,5	5) [0 sec]					
•	3 4 LERENG HULLISTA 340 GEMPA 2017 ORE (V/H=0.3	75) [0 sec]	·				
Project Explorer Solve Manager	Undo 💌 Redo 💌						Close
2-Dimensional							

d. Akan muncul kotak dialog Keyin Analyses.

									>
Na	ame:	0.1.1 LEREN	G HILIR STA 340) Tanpa	Description:				_
Pa	arent:	0. STA 340 E	v 78,3	~					0
Analysis T	ype:	Ordinary				/			
Settings	Slip Surface	Distribution	Conversions						
	Sip Surrace	Distribution	convergence						
PWP Cor	nditions from:	Pare	nt Analysis		~	Time:	(last)	~	1
Uses	s results from	the parent and	alysis.						
Staged F	Pseudo-static	analysis:							
(none)			~						
Partial F	actors:								
(none)			~						
Unit Wei	ight of Water:	9.80	7 kN/m³	1					
				1					
								Clos	e
				-					

Gambar 3.14 Setting keyin tipe analisis yang akan digunakan

80

e. Sebelum memulai input data perlu dilakukan setting Keyin terlebih dahulu, yaitu setting analysis type, side function dan PWP condition.

Untuk slice function pada gambar dibawah ini menggunakan Half- sine function dan PWP condition menggunakan Parent Analysis hasil perhitungan SEEP/W.

Keyin analyses yaitu untuk menentukan bidang keruntuhan dan menentukan tipe *slip surface* yang akan digunakan. Pada gambar dibawah *slip surface* yang digunakan adalah grid dan radius. Grid radius yaitu untuk mencari bidang kelongsoran.

				—		×
Name:	0.1.1 LERENG HILIR	STA 340 Tanpa	Description:			
Parent:	0. STA 340 Elv 78,3	~				0
Analysis Type:	Ordinary		``````````````````````````````````````	<i>,</i>		
Settings Slip Surface	Distribution Conver	raence		_		
Direction of movement		genee				
	0-1111					
Left to right	⊖ Right to le	ft	Use passiv	e mode		
Slip Surface Option						
Entry and Exit		to store:	ip surfaces	1]	
Specify radiu	is tangent lines					
Grid and Radius		Optimize crit	tical slip surfa	ce location		
	block slip surface lipes					
	block silp surface lines					
◯ Critical Slip Surfa	ices from:					
Tension Crack Option						
No tension crack		Water in Tensio	on Crack			
O Tension crack an	gle: 0 °	Filled with wate	r (0 to 1):	0		
O Tension crack lin	e	unit weight of v	water: 9.8	su / kN/m³		
					Clos	se

Gambar 3.15 Setting *slip surface*

f. Membuat material untuk input ke dalam geometri bendungan. KeyInmaterial.

	– ø ×
Materials	
Vane V Zona Random Enos Iral Actor	Calor Add 💌
Louis mile Rootbee Nagal Tarlo Coldat Muda CL-OM, MM-MM Batu Peer Tufen Coldat Muda Batu Peer Tufen Abu-abu	Assgred
Veet	Color:
Tomini Kedap	Set
Stope Stability Material Model: Mehr-Coulomb V Bakri Suction REwrebpe LigueEnction Advanced Unit Weight: Cohesion': [JZKIm*] 2019a Phi: 27.03*	
Undo 💌 Redo 🖤	Show legend Properties Close

Gambar 3.16 Input Material

N	Uraian	γ sat	C'	φ'
NO		kN/m ³	kN/m ²	(°)
1	Zona 1 (Core)	17	20	27,03
2	Zona 2 (Filter)	18	0	30
3	Zona 3 (Random)	17,5	10	29,3
4	Batu Pasir Tufan Coklat Muda	13.46	106	49.87
5	Batu Pasir Abu-abu	15.11	105	49.81
6	Napal Tufan	13.53	81	39.14

Tabel 3.3 Data Material Bendungan

g. Setelah input material dilanjutkan penggambaran material padageometri bendungan dengan cara Draw-material pilih region yang akandiisi.

Gambar 3.17 Input Draw Material

h. Perhitungan faktor keamanan hilir bendungan dengan cara Entry-Exit

Gambar 3.18 Entry dan Exit

i. Selanjutnya pilih *Solve Manager* lalu pilih start, untuk memulai menghitung faktor kemanan.

Solve Manager		д ×
🔗 Sta <u>r</u> t 💌 🧑	Stop	C
Analysis Name	Status	^
🗹 🐺 0. STA 340	Solved 03/24/2023 02:	
🗹 📐 0.1.1 LEREN	Solved 03/24/2023 02:	
🗹 📐 0.1.2 LEREN	Solved 03/24/2023 02:	
🗹 📐 0.1.3 LEREN	Solved 03/24/2023 02:	
🗹 📐 0.1.4 LEREN	Solved 03/24/2023 02:	
🗹 📐 0.1.5 LEREN	Solved 03/24/2023 02:	
🗹 📐 0.2.1 LEREN	Solved 03/24/2023 02:	
🗹 📐 0.2.2 LEREN	Solved 03/24/2023 02:	
🗹 📐 0.2.3 LEREN	Solved 03/24/2023 02:	
🗹 📐 0.2.4 LEREN	Solved 03/24/2023 02:	
🗹 📐 0.3.1 LEREN	Solved 03/24/2023 02:	
🗹 📐 0.3.2 LEREN	Solved 03/24/2023 02:	
🗹 📐 0.3.3 LEREN	Solved 03/24/2023 02:	
🗹 📐 0.3.4 LEREN	Solved 03/24/2023 02:	
✓ ▲ 0.3.5 LEREN	Solved 03/24/2023 02:	
🗹 📐 0.4.1 LEREN	Solved 03/24/2023 02:	
🗹 📐 0.4.2 LEREN	Solved 03/24/2023 02:	
🗹 📐 0.4.3 LEREN	Solved 03/24/2023 04:	
🗹 📐 0.4.4 LEREN	Solved 03/24/2023 04:	
🗹 📐 1.1 LERENG	Solved 03/24/2023 02:	
🗹 📐 1.2 LERENG	Solved 03/24/2023 02:	
🗹 📐 1.3 LERENG	Solved 03/24/2023 02:	
🗹 📐 1.4 LERENG	Solved 03/24/2023 02:	
🗹 📐 1.5 LERENG	Solved 03/24/2023 02:	
🗹 📐 2.1 LERENG	Solved 03/24/2023 02:	
🗹 📐 2.2 LERENG	Solved 03/24/2023 02:	
	Colucid 02/24/2022 02:	~
Project Explorer Sol	ve Manager	

Gambar 3.19 Solve Analysis

j. Setelah perhitungan faktor keamanan selesai maka *Output* yang keluar adalah sebagai berikut:

Gambar 3.20 Hasil Perhitungan SLOPE/W Keamanan Lereng Hilir Tanpa Gempa