APPENDICES

No	Journal	Author	Title	Abstracts	Mo	Steps	_	uistic
	Name				ves		Tenses	Voice
				Fragile image watermarking could be used to authenticate a digital image due to modification or altering.	M1	S-2	Simple Past	Passive
				A watermark is embedded into the image.	M1	S-3	Simple Present	Passive
				When the image was modified or altered, the watermark is also altered or fragile.	M1	S-3	Simple Past	Passive
				One of popular image format is GIF image.	M1	S-3	Simple Present	Active
				Some fragile watermarking algorithms are applied to the single GIF image only, none for animated images.	M1	S-3	Simple Present	Passive
2	International Journal on Electrical Engineering and Informatics	Rinaldi Munir	A Fragile Watermarking Scheme for Authentication of GIF Images	However, we could modify the existing steganography algorithm to build a fragile watermarking scheme for any kind of GIF images (still images or animated images).	M1	S-4	Simple Past	Active
	(STEI ITB)			In this paper, we reused EzStego to embed a watermark into the GIF images.	M2		Simple Past	Active
				EzStego is a steganography algorithm especially for hiding the message in the palette images such as the GIF images.	М3	S-6	Past Simple	Active
		The watermark, which is a binary image, is inserted into a GIF image based on EzStego embeddeing scheme. For increasing security, the watermark is encrypted with the random bits based on chaos system before embedding. M3 S-7	S-7	Simple Present	Passive			
				the watermark is encrypted with the random bits based on chaos system before	M3	S-7	Simple Present	Passive

				To prove authentication of the image, the watermark is extracted from the watermarked image based on EzStego extraction scheme and then compare it with the original watermark.	M3	S-7	Simple Present	Passive
				The fragile watermark indicates that the image has been altered.	M4		Simple Present	Active
				We also could find parts of the image that has been altered.	M4		Simple Past	Active
				We have tested the performance of the proposed scheme by doing some typical attacks to the watermarked images.	M3	S-7	Present Perfect	Active
				Understanding images by recognizing its objects is still a challenging task.	M1	S-1	Simple Present	Active
				Tracking of moving human and recognition have been developed by researchers but not yet shows enough information needed for recognition.	M1	S-4	Present Perfect	Passive
	International Journal on	Dian Andriana, Ary Setijadi	Combination of Face and Posture	Initially, a tracking process of an object starts with detection and recognition of the object in a static pose and position, and then continues in movement in different poses.	M1	S-3	Simple Present	Active
3	Electrical Engineering and Informatics (STEI ITB)	Prihatmanto, Egi Muhammad Idris Hidayat, and Carmadi Machbub	Features for Tracking of Moving Human Visual Characteristics	Available moving human recognition methods still has error in classification and need a huge amount of examples which may still be incomplete.	M1	S-4	Simple Present	Active
				Human face and body posture characteristics such as size of the eyes, nose, mouth, or fat or thin bodies, are important visual features in different poses for personal identification to increase accuracy of human recognition system, and it is still rare in researches.	M1	S-2	Simple Present	Active
				This paper attempts to describe visual features	M2		Simple Present	Active

				that best known for human, but hard to be recognized by machines. Curve fitting approaches				
				to face and body posture features are also introduced to capture exact patterns of the features.	M3	S-7	Simple Present	Active
				Body postures are also preprocessed with a Kinect depth camera, and also compared to popular and recent methods of visual object recognition.	М3	S-7	Simple Present	Passive
				Finally, we demonstrate our method can be useful for visual object classification.	M3	S-7	Simple Present	Active
				Probabilities of personal identification can be increased by using different poses and characteristics of smaller detail features through body postures and face areas.	M4		Simple Present	Passive
				More detail features will richen comparison data samples for higher recognition accuracy.	M5	S-9	Simple Future	Active
				A system of securing voice communication on mobile phone based on peer-to-peer SIP protocol (P2PSIP) is discussed in this paper.	M1	S-1	Simple Present	Passive
4	International Journal on Electrical Engineering	Yoanes Bandung and Andri	Development of Key Exchange Protocol to Enhance	This paper presents a new key exchange protocol for secure Voice over Internet Protocol (VoIP) communication on mobile phones with P2PSIP.	M1	S-3	Simple Present	Active
4	and Informatics (STEI ITB)	Priyatna Putra	Security of Voice over Internet	In this paper, security threats and issues in VoIP are analyzed .	M2		Simple Present	Passive
			Protocol on Mobile Phone	In our approach, we combine key exchange protocol based on the Elliptic Curve Diffie Hellman (ECDH) public key cryptography with identity based user's authentication, beside we use existent text message	M3	S-6, S-7	Simple Present	Active

to exchange user information (identity, IP				
Address, and Port). The key exchange protocol is proposed to assure confidentiality and integrity of voice communication on mobile	M3	S-7	Simple Present	Passive
phone. We conducted security analysis between the proposed protocol with the existing ECDH protocol and compared their performance of key generating and key exchange time.	M3	S-7	Simple Past	Active
The proposed method was validated by Scyther tool for proofing the proposed key exchange protocol.	M3	S-7	Simple Past	Passive
The experiment results showed that the combination of ECDH and authentication mechanism has proved to be secure against attacks.	M4		Simple Past	Active
With the addition of the authentication scheme, total execution time of generate key and exchange key is slower by 11.70% than those of the original ECDH.	M4		Simple Present	Active
Although the execution time run more slowly, we can guarantee that the VoIP communications still can be performed interactively without impairments because the key exchange process is carried out before communication between two peers begins.	M5	S-9	Simple Present	Active
We conducted the confidentiality and integrity examination using Wireshark and Mean Opinion Score (MOS).	M3	S-6	Simple Past	Active
Results of the Wireshark tool show that the VoIP communication is secure againts attacks.	M4		Simple Present	Active

				From the MOS measurements we obtained score 3.6 which means we achieve good quality and integrity of VoIP communication.	M4 (em bed ded M5	S-8	Simple Past	Active
				This paper proposes a machine-to-machine device connectivity (M2M-DC) framework for enhancing the efficiency of smart metering systems by controlling electrical devices in a building.	M2		Simple Present	Active
				The Internet of Things (IoT) is a technology trend implemented in many areas, including the utilization to enhance the efficiency of power consumption.	M1	S-3	Simple Present	Active
		Maman Abdurohman,		Several smart metering solutions have been developed in recent years, but they are silo solutions that pay little attention to scalability.	M1	S-4	Present Perfect	Passive
5	International Journal on Electrical Engineering and Informatics	Aji Gautama Putrada, Sidik Prabowo, Catur W.	M2M Device Connectivity Framework	To ensure scalability, a framework that rules the number of sensors, actuators, and devices is required.	M3	S-6	Simple Present	Passive
	(STEI ITB)	Wijiutomo, and Asma Elmangoush		M2M-DC is a proposed framework that connects the nodes with sensors and actuators to the backend system based on the rule set.	М3	S-6	Simple Present	Active
				Some experiments are performed to measure the effectiveness of the system, and the results show that the M2M-DC framework can control energy consumption, achieving higher energy efficiency of 26.35% regarding the rule set.	M4		SImple Present	Active
				Based on the Wilcoxon method, the significance of the increase in efficiency on power consumption is confirmed .	M5	S-9	Simple Present	Active

				The scalability of the proposed framework is also verified by varying sensors, actuators, and devices.	M5	S-9	Simple Present	Paccina	
--	--	--	--	---	----	-----	-------------------	---------	--

No	Journal Name	Author	Title	Abstracts	Мо	Steps		guistic atures
	Name				ves		Tenses	Voice
				This research was conducted with the aim of developing previous studies that have successfully applied the science of graphology to analyze digital handwriting and characteristics of his personality through shape based feature extraction.	M2		Simple Past	Passive
	Jurnal lImu	Pratiwi, D.,	THE APPLICATION OF GRAPHOLOGY AND	The method of psychological tests commonly used by psychologists to recognize human's personality that is Enneagram will be applied in the present study.	M1	S-1	Simple Past	Passive
1	Komputer dan Informasi (FILKOM UI)	Santoso, G. B., & Saputri, F. H.	ENNEAGRAM TECHNIQUES IN DETERMINING PERSONALITY TYPE BASED ON HANDWRITING FEATURES	The Enneagram method in principle will classify the personality traits of a person into nine types through a series of questions, which then calculated the amount of the overall weight of the answer.	M1	S-3	Simple Future	Passive Active Passive
				Thickness is what will provide direction personality type, which will then be matched with the personality type of the result of the graphology analysis of the handwriting.	M1	S-3	Simple Future	Active
				Personality type of handwritten analysis results is processed based on the personality traits that are the result of the identification of a	M3	S-7	Simple Present	Passive

				combination of four dominant form of handwriting through the software output of previous studies, that Slant (tilt writing), Size (font size), Baseline, and Breaks (respite each word).				
				From the results of this research can be found there is a correlation between personality analysis based on the psychology science to the graphology science.	M4 (E mb edd ed M5	S-8	Simple Present	Passive
				Results matching personality types by 81.6% of 49 respondents data who successfully tested.	M4 (E mb edd ed M3	S-5	Simple Present	Active
				The cancer cell gene expression data in general has a very large feature and requires analysis to find out which genes are strongly influencing the specific disease for diagnosis and drug discovery.	M1	S-2	Simple Present	Active
2	Jurnal IImu Komputer dan Informasi (FILKOM UI)	Indra Waspada, Adi Wibowo, Noel Segura Meraz	SUPERVISED MACHINE LEARNING MODEL FOR MICRORNA EXPRESSION DATA IN CANCER	In this paper several methods of supervised learning (decisien tree, naïve bayes, neural network, and deep learning) are used to classify cancer cells based on the expression of the microRNA gene to obtain the best method that can be used for gene analysis.	M3 (E mb edd ed M2	S-5, S-7	Simple Present	Passive
				In this study there is no optimization and tuning of the algorithm to test the ability of general algorithms.	M3	S-7	Simple Present	Active
				There are 1881 features of microRNA gene epresi on 25 cancer classes based on tissue location.	М3	S-5	Simple Present	Active
				A simple feature selection method is used	M3	S-7	Simple Present	Passive

				to test the comparison of the algorithm.				
				Expreriments were conducted with various scenarios to test the accuracy of the classification.	М3	S-6	Simple Past	Passive
				Land-use classification utilize high-resolution remote sensing image.	M1	S-1	Simple Present	Active
				The image is utilized for improving the classification problem.	M2		Simple Present	Passive
				Nonetheless, in other side, the problem becomes more challenging cause the image is too complex.	M1	S-4	Simple Present	Active
				We have to represent the image appropriately.	M1	S-4	Simple Present	Active
				On of the common method to deal with it is Bag of Visual Word (BOVW).	М3	S-6	Simple Present	Active
	Jurnal			The method needs a coding process to get the final data interpretation.	М3	S-6	Simple Present	Active
3	Ilmu Komputer dan Informasi (FILKOM UI)	Dewa Made Sri Arsa, Grafika Jati, M H Hilman	Sparse Coding- Based Method Comparison For Land-Use Classification	There are many methods to do coding such as Hard Quantization Coding (HQ), Sparse Coding (SC), and Locality-constrained Linear Coding (LCC). However, that coding methods use a different assumption.	М3	S-6, S-7	Simple Present	Active
				Therefore, we have to compare the result of each coding method.	М3	S-7	Simple Present	Active
				The coding method affects classification accuracy.	М3	S-7	Simple Present	Active
				The best coding method will produce the better classification result.	М3	S-7	Simple Future	Active
				Dataset UC Merced consisted 21 classes is used in this research.	М3	S-5	Simple Present	Passive
				The experiment result shows that LCC got better performance / accuracy than SC and	M4		Simple Present	Active

				HQ. LCC method got 86.48 % accuracy.				
				Furthermore, LCC also got the best performance on various number of training data for each class.	M5	S-11	Simple Past	Active
				Batik fabric is one of the most profound cultural heritage in Indonesia.	M1	S-1	Simple Present	Active
				Hence, continuous research on understanding it is necessary to preserve it.	M1	S-1	Simple Present	Active
				Despite of being one of the most common research task, Batik's pattern automatic classification still requires some improvement especially in regards to invariance dilemma.	M1	S-2	Simple Present	Active
4	Jurnal IImu Komputer dan Informasi (FILKOM UI)		Batik Classification using Deep Convolutional Network Transfer Learning	Convolutional neural network (ConvNet) is one of deep learning architecture which able to learn data representation by combining local receptive inputs, weight sharing and convolutions in order to solve invariance dilemma in image classification.	M1	S-3	Simple Present	Active
				Using dataset of 2,092 Batik patches (5 classes), the experiments show that the proposed model, which used deep ConvNet VGG16 as feature extractor (transfer learning), achieves slightly better average of 89 ± 7% accuracy than SIFT and SURF-based that achieve 88 ± 10% and 88 ± 8% respectively.	M4 (E mb edd ed M3	S-5, S-6, S-7	Simple Present	Active
				Despite of that, SIFT reaches around 5% better accuracy in rotated and scaled dataset.	M4		Simple Present	Active
5	Jurnal lImu	Zumrotun Nafisah,	Face Recognition Using Complex	Face recognition is one of biometrical research	M1	S-1	Simple Present	Active

Komputer dan	Febrian Rachmadi,	Valued Backpropagation	area that is still interesting.				
Informasi (FILKOM UI)	Elly Matul Imah		This study discusses the Complex-Valued Backpropagation algorithm for face recognition.	M2		Simple Present	Active
			Complex-Valued Backpropagation is an algorithm modified from Real-Valued Backpropagation algorithm where the weights and activation functions used are complex.	M1	S-3	Simple Present	Active
			The dataset used in this study consist of 250 images that is classified in 5 classes.	M3	S-5	Simple Past	Active
			The performance of face recognition using Complex-Valued Backpropagation is also compared with Real-Valued Backpropagation algorithm.	M3	S-7	Simple Present	Passive
			Experimental results have shown that Complex-Valued Backpropagation performance is better than Real-Valued Backpropagation.	M4 (E mb edd ed M5	S-8	Present Perfect	Active

No	Journal	Author	Title	Abstracts	Мо	Steps		uistic tures
	Name				ves		Tenses	Voice
1	Journal of Informat ion Technol ogy and Comput er Science (Univers	Vivin Ayu Lestari; Ismiarta Aknuranda; Fatwa Ramdani	Development Framework for the Evaluation of Usability in E- Government: A Case Study of E- Finance Government of Malang	E-government is an effort to utilize information and communication technology especially internet to improve public service quality which generally implemented in a web based application. Usability is one of the	M1	S-1	Simple Present	Active
	itas			important quality	M1	S-1	Present	Active

Brawija	criteria for tof a web.	he success			
ya)	In this study developed aframework evaluation of in e-govern consisting of stages: (1) of the evaluation objectives, determining usability as determining metrics usal selecting us evaluation of candidates, determining required crimethod to be evaluated, (evaluating to (7) selecting making the and (8) evaluatility.	for of usability ment of eight letermining on (2) (2) (3) the objects, (3) (E) (5) (4) edd ability ed method (5) (5) (5) (6) the method, g and instrument,	S-6, S-7	Simple Past	Active
	The results application framework study of e-f resulted in methods use testing and questionnair	of this in the case inance two ed: user		Simple Past	Active
	The evaluat usability in government finance case using the profession of the profess	ion of e- for e- e studies oposed results in wel of e- ed erms of ess, and user are 96%,)	S-7	Simple Present	Active
	Which can identified to grouped into problems con aspects of effectiveness efficiency.	be o be o 16 onsisting of M4		SImple Present	Active

	Science Pizal Setva		Information system is one of the most important business supports in organizations. Webbased applications become an appropriate solution to overcome the dynamically changing environment among different units in an organization.	M1	S-1	Simple Present	Active	
			Model-View-Controller (MVC) is a well-known design pattern in web-based application development due to the separation of an application into several parts, hence it is easy to reuse and maintain.	M1	S-3	Simple Present	Active	
2		Pinandito; Ferdika Bagus Pristiawan Permana;	Framework Design for Modular Web- based Application Using Model- CollectionServic e-Controller- Presenter (MCCP) Pattern	However, such design pattern requires improvements since the information system handles business process choreography and integration between application.	M1	S-1	Simple Present	Active
	(Univers itas Brawija ya)	Perdana		Therefore, modifying the interaction of object of class in a design pattern become a challenging problem.	M1	S-1	Simple Present	Active
			In this paper, an application framework based on Model-CollectionService-Controller-Presenter (MCCP) design pattern, which is a modification of an MVC, was proposed.	M2		Simple Past	Passive	
				The proposed framework allows multiple different applications to run and provides interapplication data exchange mechanisms to improve the data communication process between applications.	M3	S-7	Simple Present	Active

					Several performance comparisons with another popular web application framework are also presented.	M3	S-7	Simple Present	Passive
		Journal of Informat ion Technol ogy and Comput er Science (Univers itas Brawija ya)	Agi Putra Kharisma; Aryo Pinandito	Design of REST API for Local Public Transportation Information Services in Malang City	Utilization of information technology in the field of public transportation has been proven in improving the quality of public transportation services.	M1	S-1	Present Perfect	Passive
					The availability of information technology that supports public transportation in Malang city is still limited.	M1	S-1, S-3	Simple Present	Passive
					An effort is required to encourage the availability of information technology that support public transportation in Malang city.	M1	S-1	Simple Present	Passive
	3				This research attempts to propose a draft proposal of REST API designed for supporting information about public transportation services in Malang city.	M2		Simple Present	Active
					The result of this research showed that the REST API should provide a search facility to find proper service mode of transportation, cost estimation, time estimation, calling or booking a public transportation, a list of all the modes of transportation that exist, as well as detailed information on a mode of transport in which includes the name of public transportation, index of	M4 (E mb edd ed M3)	S-5	Simple Past	Active

					comfortability, index of security, index of safety, index of privacy, index of availability, index of accessibility index, and route. Decline in quality caused by daily use of facilities and infrastructure owned by an organization will certainly disrupt its function in supporting the performance of the organization.	M1	S-1	Simple Future	Active
	4	Journal of Informat ion Technol ogy and Comput	Satrio Agung Wicaksono, Danniar Reza Firdausy,	Usability Testing on Android Application of Infrastructure	The solution that came from the research that has been conducted before is to develop android applications called Infiremis (Infrastructure and Facility Reporting Management Information System), that can be used to report damage to facilities and infrastructure and to track the status reporting.	M1	S-4	Present Perfect	Passive
	Scie (Uni ita Brav	er Science (Univers itas Brawija ya) Mochamad Chandra Saputra	and Facility Reporting Management Information System	This android application was developed to be used by students, lecturers and staffs of Faculty of Computer Science Brawijaya University which those users has different background persona	M3	S-7	Simple Past	Passive	
					Therefore, the usability of this android application need be tested to find out the value of effectiveness, efficiency and satisfaction of the application to fulfill its purpose.	M3	S-7	Simple Present	Passive
					This research was conducted mainly to discover the result of usability testing towards the android	M2		Simple Past	Passive

				application of infrastructure and facility reporting management information system. Based on Usability Testing that has been done show that the level of effectiveness and satisfaction of Infiremis respectively is 97,14% and 89,7%, whereas for the efficiency score is 89,9%.	M4		Simple	Active
				The smartphone development today makes the gadget not only used as a communication tool but also as an entertainment tool such as to play games and play music.	M1	S-2	Simple Present	Active
	Technol Permana, ogy and Herman Comput Tolle, Fitri Utaminingru Science m, Rizdania			The development of the smartphone also supports many technologies that can be run on the smartphone itself, such as Augmented Reality (AR), for example.	M1	S-1	Simple Present	Active
5		The Connectivity Between Leap Motion And Android Smartphone For Augmented Reality (AR)- Based Gamelan	There are some studies evaluated the AR application combined with Leap Motion, but those studies were using the SDK alpha of the Leap Motion Corp. that is now no longer accessible for the developers to use.	M1	S-4	Simple Past	Active	
				This research is meant to overcome such a problem.	M2		Simple Present	Passive
				The method proposed in this study is a technique to connect the Leap Motion with Android for Augmented Reality application.	М3	S-6	Simple Present	Active
				This paper also evaluates the technique used to	М3	S-7	Simple Present	Active

	connect the AR technology to Leap Motion so it can be a visual instrument simulation, which applied to the Gamelan traditional music instrument.				
	The experiments resulted in the accuracy rate of the application of 96.43% for right-hand movement and 97.86% for the left-hand motion.	M4		Simple Past	Active
	The high accuracy result obtained in the research can be a promising result for the future research.	M5	S-8	Simple Present	Active

No	Journal	Author	Title	Abstracts	Mo	Steps	Ling Feat	uistic tures
	Name				ves	1	Tenses	Voice
	MATICS: Jurnal Ilmu Komputer dan Teknologi Informasi (Journal of Computer Science and Information Technology) Universitas			Handwriting recognition is one of the very interesting research object in the field of image processing, artificial intelligence and computer vision.	M1	S-2	Simple Present	Active
			This is due to the handwritten characters is varied in every individual.	M1	S-1	Simple Present	Active	
1		mahmudi, M ali	i Karakter Tulisan Tangan	The style, size and orientation of handwriting characters has made every bodys is different, hence handwriting recognition is a very interesting research object.	M1	S-1	Present Perfect	Active
	Islam Negeri Maulana Malik Ibrahim Malang			Handwriting recognition application has been used in quite many applications, such as reading the bank deposits, reading the postal code in letters, and helping peolple in managing documents.	M1	S-4	Present Perfect	Passive
				This paper presents a handwriting recognition application using Matlab.	M2		Simple Present	Active

				Matlab toolbox that is used in this research are Image Processing and Neural Network Toolbox.	M3	S-6	Simple Present	Active
				Losses in chicken eggs hatchery make breeders income declined.	M1	S-1	Simple Present	Active
				The main cause of these things because it is less effective and efficient in distinguishing the state of fertilities in the eggs.	M1	S-1	Simple Present	Active
				The detection of fertile and infertile eggs will automatically provide ease of selection and removal of the eggs are fertile and infertile eggs.	M1	S-1	Simple Future	Active
	MATICS: Jurnal Ilmu Komputer dan Teknologi Informasi (Journal of Computer Science and Information Diantoro, Aris; Santoso,		This will bring more profits for breeder as well as time efficiency more and selling power.	M1	S-1	Simple Future	Active	
			Eggs Fertilities Detection System	Infertile eggs will give breeders the sale price if it is known as early as possible in order not to fail hatching.	M1	S-1	SImple Future	Active
2		· ·	on the Image of Kampung Chicken Egg Using Naive Bayes Classifier Algorith m	A method fuzzy c means and naive bayes classifier is designed to identify the state of the fertility of eggs.	M2		SImple Present	Passive
	Technology) Universitas Islam Negeri			By putting eggs near the source light and black background in a dark room, then taked of image with a high qualities camera.	М3	S-7	Simple Past	Active
	Maulana Malik Ibrahim Malang			From the resulting camera image, then extracted features or take characteristics that distinguish between fertile and infertile eggs.	М3	S-7	Simple Past	Active
				The total amount of data used in this study of 450 eggs image sourced from the field survey.	М3	S-5	Simple Past	Active
				Training data is used 250 data, 125 fertile eggs image data and 125 infertile eggs image data.	М3	S-5	Simple Present	Passive
				As for testing the data using the 200 data, the image data 150 fertile eggs and 50 infertile eggs image data.	M3	S-5	Simple Present	Active
				Based on trial results of training data is obtained the best accuracy is equal to 80% at intervals of 5, 86.4% at intervals of 5 and dimensions	M4		Simple Present	Passive

					70x60, and 99.6% on 1x2 resize.				
					The accuracy of the results obtained by 78%, 82% and 94% in trials testing data.	M4		Simple Past	Active
		MATICS : Jurnal Ilmu Komputer	Ilmu puter un ologi masi	Berbasis Fuzzy sebagai	Determining the exact location of the export market with the right amount in the marketing process is expected to reduce the number of losses due to the stagnancy of product turnover.	M1	S-1	Simple Present	Passive
		dan Teknologi Informasi			Appropriate target market system using fuzzy control on MSMEs.	МЗ	S-6	Simple Present	Active
	3	(Journal of Computer Science and Information Technology) Universitas Islam Negeri Maulana Malik Ibrahim Malang	Nurdewanto, Bambang		Fuzzy control method is used to overcome the determination of a market that is influenced by the subjectivity of marketing actors.	M2		Simple Present	Passive
			Islam Negeri Maulana Malik Ibrahim		Online market matching application which is the right decision support system of the right export destination and the right amount so efficient.	M3	S-7	Simple Present	Active
					The result of market matching application of fuzzy method is recommendation of destination and quantity that can be exported.	M4		Simple Present	Active
		MATICS : Jurnal Ilmu			One of the IT applications implemented in higher education and quite rich in renewable IT features is elearning.	M1	S-2	Simple Past	Active
	4	Jurnal Ilmu Komputer dan Teknologi Informasi (Journal of Computer Science and Information Technology)	Komputer dan Feknologi Informasi Journal of Computer cience and Vijaya, nformation Annas	Optimasi dan Reinisiasi Sistemati s Pembelaj	However, facts show that in Indonesia it appears that there are not many universities are moved to apply e-learning, in addition, from the other side for others who have implemented e-learning still leads to a pattern that has not been systematic according to its allocation.	M1	S-4	Simple Present	Active
		Universitas Islam Negeri		aran Elektroni k	This paper will discuss the optimization and re-initiation of e-learning using a case study.	M2		SImple Future	Active
		Maulana Malik Ibrahim Malang	Maulana Malik brahim		In addition to reviewing the aspects of human resources involved in e-learning, the following features and functions can be developed in e-learning, such as collaboration, social networking, and so forth.	М3	S-6	Simple Present	Passive

				This review is conducted considering that in addition to e-learning included in the top 10 topics in higher education, elearning also has the potential as acceleration in the learning process and collaboration on campus	M3	S-7	Simple Present	Passive
				Report handling on "LAPOR!" system depends on the system administrator who manually reads every incoming report [3].	M1	S-1	Simple Present	Active
				Read manually can lead to errorsin handling complaints [4] if the data flow is very large and grows rapidly it can take at least three days and sensitive to inconsistencies [3].	M1	S-1	Simple Present	Active
	MATICS: Jurnal Ilmu Komputer dan Teknologi Informasi (Journal of Computer	Iriananda, Syahroni Wahyu; Muslim, Muhammad Aziz; Dachlan, Harry	Identifika si Kemiripa n Teks Menggun akan Class Indexing Based dan Cosine Similarity Untuk	In this study, the authors propose a model that can measure and identify the similarity of document reports computerized that can identify the similarity between the Query (Incoming) with Document (Archive).	M2		Simple Present	Active
5	Science and Information Technology) Universitas Islam			In this study, the authors employed term weighting scheme Class-Based Indexing, and Cosine Similarity to analyze document similarities.	М3	S-6	Simple Past	Active
	Negeri Maulana Malik Ibrahim Malang	Soekotjo	Klasifika si Dokumen Pengadua n	CoSimTFIDF, CoSimTFICF and CoSimTFIDFICF values are defined as feature sets for the text classification process using the KNearestNeighbor (K-NN) method.	М3	S-6	Simple Present	Passive
				The optimum resultevaluation with preprocessing employ Stemming and the bestresult of all features is 75% training data ratio and 25% testdata on the CoSimTFIDF feature that is 84%.	M4		Simple Present	Active
				Value k = 5 has a high accuracy of 84.12%	M4		Simple Present	Active

N	Journal	Author	Title	Abstracts	Mov	Step	Lingui Featu	
О	Name				es	S	Tenses	Voice

	: Journal of Computer Ogi Science Sarweng Taufiq F Informatio n Systems Wisnu	Kurniawan,	ANALISIS DAN PENGEMB ANGAN SISTEM MANAJEM EN	This study will describe the process of identification and categorization of knowledge in PT XYZ as the research object, where the company requires a container that supports the sharing of information for documentation and dissemination of existing knowledge in the company, as well as implementing an open source system for managing knowledge independently and centralized.	M2 (Em bedd ed M3)	S-7	Simple Future	Active
1		Sarwengga, Taufiq Febri Dewanto, Wisnu Try	PENGETA HUAN BERBASIS PERANGK AT LUNAK OPEN SOURCE (STUDI KASUS)	The research method is Inukshuk KM Model and data collection methods used were interviews and observation.	M3	S-6	Simple Present	Active
				The outcome of this research is a receptacle for storing and managing knowledge that is easily accessible by the user.	M4		Simple Present	Active
				With the implementation of knowledge management system is expected to improve the quality of knowledge sharing among employees, as well as improving the quality of knowledge content in the company.	M5	S-8	Simple Present	Passiv e
			DETEKSI	Diabetes is a disease that occurs when the sugar in the blood is high.	M1	S-1	Simple Present	Active
	Computatio : Journal of Computer	1, Chairisni	PENYAKIT DIABETES DENGAN METODE	Glucose tests should be taken of several times to make sure diabetes disease detects in the body.	M1	S-1	Simple Present	Passiv e
2	Science and Informatio n Systems	Lubis 2 , Dyah Erny Herdiwindia ti 3	FUZZY C- MEANS CLUSTERI NG DAN	Some indicators of the body conditions can be a starting point to detect diabetes.	M1	S-1	Simple Present	Active
	(UNTAR)		K-MEANS CLUSTERI NG	However, the limitations of medical specialist to detect on the large data manually may still become a constraint.	M1	S-4	Simple Present	Active

				One of the solution to cover up the gap between them is performing technology's in term of computation with the calculation of K-Means clustering and Fuzzy C-Means Clustering method.	M3 (Em bedd ed M2)	S-7	Present Continuou s	Active
				It clusters are composed of a group of diabetic and non-diabetic.	М3	S-7	Simple Present	Passiv e
				Dataset used in the evaluation process is nine variance data.	М3	S-5	Simple Present	Active
				The highest accurate rate for method of K-Means is 73,438% and for the Fuzzy C-Means result is 82,812%.	M4		Simple Present	Active
	Computatio : Journal of Computer Science and Informatio n Systems (UNTAR)	Andre Widjaya, Lely Hiryanto,	PREDIKSI MASA STUDI MAHASIS WA DENGAN VOTING FEATURE INTERVAL 5 PADA	Period of study prediction application is an application that implement Voting Feature Interval 5 method for its students' period study prediction feature.	M1	S-1	Simple Present	Active
				The result of the prediction will be used by head of department and academic advisors to arrange a proper study plan for the student.	M2		Simple Future	Passiv e
3				Case study that was used in this application is period of study prediction for Computer Science department, Tarumanagara University student, class of 2013 and 2014	М3	S-5	Simple Present	Active
		Handhayani	APLIKASI KONSULT ASI AKADEMI K ONLINE	Learning data that used was mark of selected course from Faculty of Information Technology, Tarumanagara University student, class of 2008 until 2012.	M3	S-5	Simple Past	Active
				Voting Fature Interval 5 method classify student grade in testing dataset based on voting grade formed by lerning dataset.	M3	S-7	Simple Present	Active
				The result of testing is fairly accurate with 73,33% in average	M4		Simple Present	Active

				The human voice is a very unique sound wave.	M1	S-2	Simple Present	Active
				That's because every human being has a different kind of sound wave	M1	S-1	Simple Present	Active
				The fundamental difference in human voice is high the low the sound level associated with the signal from sound waves.	M1	S-1	Simple Present	Active
			DENGENA	The purpose of this research is to know the accuracy result from Fast Fourier Transform and Bayes method in pattern recognition.	M2		Simple Present	Active
4	Computatio : Journal of Computer Science and Informatio n Systems (UNTAR)		PENGENA LAN POLA SUARA MANUSIA BEREKSTE NSI FILE WAV MENGGUN AKAN METODE FAST FOURIER TRANSFOR	The Fast Fourier Transform method is used for feature extraction and Bayes method is used to calculate the sound probability value between the train data and test data, then Bayes Method is used to determine the result of the introduction of some previously stored train data.	M3	S-7	Simple Present	Passiv e
			M DAN BAYES	This research was made using Matlab R2016a, by matching the pattern of human sound that has been made before or called train data with new sound pattern or called test data	М3	S-6, S-7	Simple Past	Passiv e
				Testing is done on voice in the database and the voice is not in the database.	M3	S-5	Simple Present	Passiv e
				Test results for voice in the database were 96% for first men and 76% for first women.	M4		Simple Past	Active
				While testing for voice is not in the database is 46% for second men and 50% for second women.	M4		Simple Present	Active
5	Computatio : Journal of Computer		DETEKSI KEMIRIPA N SOURCE	The ease of accessing information makes easier to do plagiarism.	M1	S-1	Simple Present	Active
	Science and Informatio	M. 2 , Agus Budi D. 3	CODE DENGAN METODE	Plagiarism not only applied to written essay, but these day copying	M1	S-1	Simple Past	Active

n Systems (UNTAR)	FINGERPRI NT BASED DISTANCE	other people's program is also considered as plagiarism.				
	DAN LEVENSHT EIN DISTANCE	This paper will researching an method to automatically calculating the similarity of pair of source code.	M2		Simple Future	Active
		The method used are fingerprint based distance and Levenshtein Distance	M3	S-6	Simple Present	Active
		The result will be measured in accuracy, precision, and recall.	M3	S-5	Simple Future	Passiv e
		The result is in some dataset, levenshtein distance is better than fingerprint based distance for detecting plagiarism in student's code especially beginner in C++.	M4		Simple Present	Active

No	Journal	Author	Title	Abstracts		Ste	Ling Feat	uistic ures
	Name				es	ps	Tenses	Voice
			PERANCANG AN DAN IMPLEMENTA	Learning media is an intructional component that includes messages, people, and tools.	M1	S-1	Simple Present	Active
			AN INTERAKTIF	Learning media can also be interpreted as a tool that serves to convey the message of learning.	M1	S-1	Simple Present	Passive
1	Jurnal Teknolo gi Wijaya1) Putu Wida ROBOTIC INVENTION SYSTEM PLATFORM MINDSTORM	To convey learning messages, teachers typically use teaching aids such as books, pictures, maps, models, or other tools.	M1	S-2	Simple Present	Active		
1	Komput er (Univ dhyana	r (Univ lhyana Cahyadi Putra	NXT MENGGUNAK AN METODE INKUIRI BERBASIS MACROMEDI A FLASH PLAYER (STUDI KASUS: UNIVERSITAS DHYANA PURA)	In order to provide concrete experience, motivation to learn, and increase absorption.	M1	S-1	Simple Present	Active
	putra)			Learning media should be effective and in accordance with the needs of students.	M1	S-2	Simple Past	Active
				In the development of learning media follow the development of technology Dhyana Pura University is one of the campuses located in the city of Denpasar.	M1	S-2	Simple Present	Active

				<u> </u>				
				Where the University Dhyna Pura has many courses, especially in informatics engineering courses.	M1	S-2	Simple Present	Active
				In the course of robotics NXT still a little tutorial and how to assemble NXT in NXT robotics courses.	М3	S-7	Simple Present	Active
				Then from that step done is to make an aplikasimedia NXT desktop-based robotics learning to simplify and reproduce the tutorial on the course of robotics NXT.	M3	S-7	Simple Present	Active
				Fuel Oil (BBM) is one of the important commodities for the people of Indonesia.	M1	S-2	Simple Present	Active
	Jurnal Teknolo gi Informa si dan Komput er (Univ dhyana putra)			BBM is distributed by sea.	M1	S-2	Simple Present	Passive
		I Wayan Supriana	IMPLEMENTA SI ALGORITMA GENETIKA DALAM PENENTUAN RUTE TERBAIK PENDISTRIBU SIAN BBM PADA PT BURUNG LAUT	One of the companies whose fleets are working in the distribution of fuel is PT Burung Laut, which is by operating the Tanker MT. Citra Bintang	M1	S-1	Simple Present	Active
				This ship distributes fuel to the Maluku and Papua areas.	M1	S-1	Simple Present	Active
				But in its distribution, this ship does not have a definite route.	M1	S-1	Simple Present	Active
2				Previous research has been done by Closeary et al. By using Ant Colony System method.	M1	S-4	Present Perfect	Passive
				In this research, conducted the shortest distance search that is passed by ship with Genetic Algorithm method for case study of Traveling Salesman Problem.	M2 (Em bedd ed M3)	S-6	Simple Past	Active
				From the test system that has been done as much as 10 times the shortest route produced with a distance of 4853 kilometers.	M4		SImple Past	Active
				The route of the ship with the distance is Tobelo, Fak - Fak, Kaimana, Tual, Dobo, Merauke, Saumlaki, Namlea, Ambon, Masohi, Sanana, Labuha, and then Ternate	M4		Simple Present	Active
3	Jurnal Teknolo gi Informa si dan Komput er (Univ	Ni Kadek Ayu Fitriandayan i1) Made Agung Raharja2)	PERANCANG AN DAN IMPLEMENTA SI SISTEM INFORMASI BEBAN KERJADOSEN	Along with technological developments that are increasingly progressing progress of technology today has an impact in improving the effectiveness and efficiency in doing every job.	M1	S-1	Simple Present	Active

	dhyana putra)	Christian Tonyjanto3)	BERBASIS WEB (STUDI KASUS:	Usefulness of the computer has a lot to help facilitate the work of humans so the existence of this computer is needed.	M1	S-1	Simple Present	Active
			UNIVERSITAS DHYANA PURA BALI)	Both individuals, institutions, and governments take various efforts to take advantage of this information technology development.	M1	S-1	Simple Present	Active
				Even in education in Indonesia, especially college	M1	S-2	Simple Present	Active
				Each college has a Tri Dharma activity of universities undertaken by lecturers covering 4 areas, namely: education and teaching, research, community service, support set by the leadership of the university.	M1	S-2	Simple Present	Active
				Therefore, the lecturer's burden must be proportionally distributed and measured by utilizing the development of information technology.	M2		Simple Present	Passive
				One of them is a Web-Based Lecturer Information System (BKD) that can help the leader in knowing the lecturer's workload information that is borne and helps the leader in knowing the workload information that is borne by each lecturer.	M3	S-7	Simple Present	Active
			SISTEM REKOMENDA SI LOKASI MAGANG BERDASARK	This research is aimed at providing student location information to students in accordance with their respective competencies.	M2		Simple Present	Passive
4	Jurnal Teknolo gi Informa si dan Komput	Agus Aan Jiwa Permana1, Gede Aditra	BERDASARK AN KOMPETENSI BERBASIS ARTIFICIAL INTELLIGENC E UNTUK LULUSAN DEMAND DRIVEN (STUDI KASUS: JURUSAN	The most important thing is to direct students to an apprenticeship location that is in accordance with their competencies because it will greatly influence their career in the future.	M1	S-1	Simple Present	Active
	er (Univ dhyana putra)			Armed with skills at the internship location, students can improve their competence in accordance with market demand (demand driven).	M1	S-1	Simple Present	Active
			MANAJEMEN INFORMATIK A, UNDIKSHA)	The program at the end of semester 5 at the end of the semester students have to find an internship location.	M1	S-1	Simple Present	Active

				Someone is said to be competent in a field if it meets the aspects of knowledge, skill and attitude.	M1	S-2	Simple Present	Passive
				Knowledge, skills and attitudes (PKS) are strongly influenced by the learning system and learning environment.	M1	S-2	Simple Present	Passive
				The tools developed are an application based on Artificial Intelligence using the Elman Recurrent Neural Network (ERNN) method.	M3	S-6	Simple Present	Active
				ERNN is a Artificial Terms Network method that has a feedback connection from previous input, so that it is expected to improve the performance of ANN.	M3	S-6	Simple Present	Active
				The structure makes iteration will be much faster and convergence will be faster in the training process.	М3	S-7	Simple Present	Active
				The system developed will be able to produce apprenticeship location recommendations in accordance with student competencies using previous apprenticeship data.	M3	S-7	Simple Future	Active
				The data used is measurable and includes a Grade Point Average that represents aspects of knowledge, aspects of skills adapted to subjects related to graduate profiles, personality tests that have international standards developed by John Holland represent aspects of attitude.	M3	S-5	Simple Present	Active
	Jurnal Teknolo	rdiawan	PERANCANG AN APLIKASI PENCATATA N PERKEMBAN	Recording and processing data of mother and child in health book (KIA) at Sumbersari Public Health Center is still done manually by handwriting.	M1	S-4	Simple Present	Passive
5	gi Informa si dan Komput er (Univ	Rivaldi1) Bambang Hadi Kartiko2) Gerson	GAN ANAK BAWAH LIMA TAHUN DAN IBU HAMIL	Manual KIA book recording has an impact on the quality of information contained in KIA books that are not presented optimally.	M1	S-1	Simple Present	Active
	dhyana putra)	Feoh3	BERBASIS ANDROID DI PUSKESMAS SUMBERSARI KABUPATEN PARIGI	This resulted in inhibition of health services and complete immunization to mothers and children, as well as delays in the process of reporting by health personnel.	M1	S-1	Simple Past	Active

	MOUTONG PROVINSI SULAWESI TENGAH	In connection with this, the current study was conducted to design and implement the application of maternal and child health recording data based on android system.	M2		Simple Past	Passive
		This application design method uses system development life cycle which consists of planning, analysis, design, implementation and usage.	M3	S-6	Simple Present	Active
		The design of this application using logic modeling by creating context diagrams, data flow diagrams, and entity relationship diagrams.	M3	S-6	Simple Present	Active
		The application is made with android operating system version 6.0.1, and uses java based eclipse, with Angular JS as a web-based framework.	М3	S-7	Simple Present	Passive
		This application has the ability or features to record patient demographic data, maternal and child health development checks, medications and vaccines, and periodically display charts and tables of maternal and child health.	М3	S-7	Simple Present	Active
		This android based application can be used by midwives and integrated health service cadres with online system.	M3	S-7	Simple Present	Passive

MOVE OCCURRENCES

	SINTA 1	SINTA 4		
M1	85	M1	62	
M2	23	M2	18	
M3	64	64 M3		
M4	31	M4	21	
M5	14	M5	4	
TOTAL	217	TOTAL	162	
POLA	= M1 - M3 - M4 - M2 - M5	POLA = M1 - M3 - M4 - M2 - M5		
	SINTA 2	SINTA 5		
M1	56	M1	49	
M2	21	M2	20	

M3	62	M3	56		
M4	29	M4	19		
M5	14	M5	7		
TOTAL	182	TOTAL	151		
POLA	= M3 - M1 - M4 - M2 - M5	POLA = M3 - M1	l - M2 - M4 - M5		
	SINTA 3	SINTA 6			
M1	62	M1	80		
M2	18	M2	20		
M3	51	M3	48		
M4	19	M4	13		
M5	6	M5	2		
TOTAL	156	TOTAL	163		
POLA	= M1 - M3 - M4 - M2 - M5	POLA = M1 - M3 - M2 - M4 - M5			

	Moves 1	Moves 2	Moves 3	Moves 4	Moves 5
SINTA 1	39.17%	10.60%	29.49%	14.29%	6.45%
SINTA 2	30.77%	11.54%	34.07%	15.93%	7.69%
SINTA 3	39.74%	11.54%	32.69%	12.18%	3.85%
SINTA 4	38.27%	11.11%	35.19%	12.96%	2.47%
SINTA 5	32.45%	13.25%	37.09%	12.58%	4.64%
SINTA 6	49.08%	12.27%	29.45%	7.98%	1.23%

STEP OCCURRENCES

S	INTA	A 1	SINTA 4			
S-1	45	26.32%	S-1	41	32.03%	
S-2	10	5.85%	S-2	11	8.59%	
S-3	15	8.77%	S-3	10	7.81%	
S-4	21	12.28%	S-4	3	2.34%	
S-5	12	7.02%	S-5	8	6.25%	
S-6	14	8.19%	S-6	25	19.53%	
S-7	40	23.39%	S-7	26	20.31%	
S-8	6	3.51%	S-8	2	1.56%	
S-9	4	2.34%	S-9	0	0.00%	

S-10	0	0.00%	S-10	0	0.00%		
S-11	4	2.34%	S-11	2	1.56%		
TOTAL	171	100.00%	TOTAL	128	100.00%		
S	INTA	A 2	SI	NTA	x 5		
S-1	37	25.17%	S-1	37	30.58%		
S-2	7	4.76%	S-2	5	4.13%		
S-3	10	6.80%	S-3	6	4.96%		
S-4	11	7.48%	S-4	4	3.31%		
S-5	20	13.61%	S-5	12	9.92%		
S-6	15	10.20%	S-6	15	12.40%		
S-7	33	22.45%	S-7	34	28.10%		
S-8	10	6.80%	S-8	4	3.31%		
S-9	0	0.00%	S-9	2	1.65%		
S-10	0	0.00%	S-10	0	0.00%		
S-11	4	2.72%	S-11	2	1.65%		
TOTAL	147	100.00%	TOTAL	121	100.00%		
S	INTA	A 3	SINTA 6				
S-1	41	32.80%	S-1	56	42.42%		
S-2	7	5.60%	S-2	14	10.61%		
S-3	9	7.20%	S-3	1	0.76%		
S-4	9	7.20%	S-4	10	7.58%		
S-5	8	6.40%	S-5	5	3.79%		
S-6	10	8.00%	S-6	14	10.61%		
S-7	35	28.00%	S-7	31	23.48%		
S-8	4	3.20%	S-8	0	0.00%		
S-9	1	0.80%	S-9	1	0.76%		
S-10	0	0.00%	S-10	0	0.00%		
S-11	1	0.80%	S-11	0	0.00%		
TOTAL	125	100.00%	TOTAL	132	100.00%		

M1	91	53.22%
M3	66	38.60%
M5	14	8.19%

Annisa Jullia Chandra, 2023 COMPUTER SCIENCE JOURNALS IN SINTA: A RHETORICAL MOVE ANALYSIS OF RESEARCH ARTICLE ABSTRACTS Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

M1	65	44.22%
М3	68	46.26%
M5	14	9.52%

SINTA 3

]	M1	66	52.80%
	М3	53	42.40%
	M5	6	4.80%

SINTA 4

M1	65	50.78%
М3	59	46.09%
M5	4	3.13%

SINTA 5

M1	52	42.98%
М3	61	50.41%
M5	8	6.61%

SINTA 6

M1	81	61.36%
M3	50	37.88%
M5	1	0.76%

MOVE SALIENCES

		M1						M2					
NO	SINTA			SINTA			NO			SINTA			
	1	2	3	4	5	6		1	2	3	4	5	6
1	✓	√	✓	✓	Х	✓	1	✓	✓	✓	✓	✓	X
2	✓	✓	✓	✓	✓	✓	2	✓	✓	✓	✓	✓	✓
3	✓	✓	✓	✓	✓	✓	3	✓	✓	✓	✓	✓	✓
4	✓	✓	✓	✓	√	✓	4	✓	X	✓	✓	√	✓
5	✓	✓	✓	✓	✓	✓	5	✓	✓	✓	✓	✓	✓
6	✓	✓	✓	✓	√	✓	6	✓	✓	✓	✓	√	Х
7	✓	✓	✓	✓	✓	✓	7	✓	✓	✓	X	✓	✓
8	√	>	√	✓	√	√	8	√	Х	✓	√	✓	√
9	✓	✓	✓	✓	✓	✓	9	✓	✓	✓	✓	✓	✓

10	✓	✓	✓	✓	✓	✓	10	X	X	X	✓	✓	✓
11	✓	✓	✓	✓	✓	✓	11	✓	✓	✓	✓	X	✓
12	✓	✓	✓	✓	√	√	12	✓	✓	✓	√	✓	√
13	✓	✓	√	√	\	>	13	√	\	X	>	✓	>
14	✓	✓	√	\	\	√	14	<	\	✓	√	✓	√
15	✓	✓	√	√	√	√	15	√	✓	✓	✓	✓	X
16	✓	✓	✓	✓	√	X	16	✓	√	X	>	✓	>
17	✓	✓	√	√	\	>	17	√	\	✓	>	✓	>
18	✓	✓	✓	✓	√	✓	18	✓	✓	✓	>	√	X
19	✓	✓	√	√	\	>	19	√	\	✓	>	✓	>
20	✓	✓	√	√	>	>	20	✓	>	√	√	√	√
TO TA							TO TA						
	100%	100%	100%	100%	95%	95%	L	95%	85%	85%	95%	95%	80%
	20	20	20	20	19	19		19	17	17	19	19	16
TO TA							TO TA						
L				_			L						
M1			11				M2			10			
NO s	SINTA	SINTA	M: SINTA	SINTA	SINTA	CINITA	NO	SINTA	SINTA	SINTA	SINTA	SINTA	SINTA
	1	2	3	4	5	6		1	2	3	4	5	6
1	✓	✓	✓	✓	√	✓	1	✓	✓	✓	X	✓	X
2	✓	✓	✓	✓	✓	✓	2	✓	X	X	✓	✓	✓
3	✓	✓	✓	✓	√	✓	3	,		,		_	X
4	✓	\checkmark						✓	✓	✓	✓	✓	
		<u> </u>	✓	✓	✓	✓	4	√ √	√ √	√ √	√ X	√ √	Х
5	✓	√ 	√ √	√ √	√ √	√ √	4 5						X
6	√ √							√	√	√	Х	√	
		✓	√	√	√	√	5	√ √	√ √	√ √	X	✓ ✓	X
6	✓	√ √	√ √	√ √	√ √	√ √	5	√ ✓ ✓	√ ✓ ✓	√ ✓ X	x ✓	√ ✓ X	X
6 7	√ √	√ √ √	√ √ √	√ √ √	√ √ √	√ √ √	5 6 7	\frac{1}{\sqrt{1}}	\frac{1}{\sqrt{1}}	√	X	✓	X
6 7 8	√ √ √	√ √ √	\frac{1}{}	\frac{1}{}	√ √ ✓	\frac{1}{}	5 6 7 8	\frac{1}{\sqrt{1}}	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \	✓ ✓ X ✓	X ✓ ✓ ✓	✓ ✓ X ✓ ✓	X ✓ ✓X
6 7 8 9	\frac{1}{\sqrt{1}}	\frac{1}{}	\frac{1}{\sqrt{1}}	\frac{1}{\sqrt{1}}	✓ ✓ ✓ ×	\frac{1}{\sqrt{1}}	5 6 7 8 9	\frac{1}{\sqrt{1}}	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \	✓	X	<pre></pre>	x
6 7 8 9 10	\frac{1}{\sqrt{1}}	\frac{1}{\sqrt{1}}	\frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4}	\frac{1}{\sqrt{1}}	\frac{1}{} \frac{1}{} \frac{1}{} \frac{1}{}	\frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}}	5 6 7 8 9	\frac{1}{\sqrt{1}}	\frac{1}{\sqrt{1}}	✓	x	<pre></pre>	x
6 7 8 9 10 11	\frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}}	\frac{1}{} \frac{1}{} \frac{1}{} \frac{1}{} \frac{1}{} \frac{1}{}	\frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}}	\frac{1}{\sqrt{1}}	✓ ✓ ✓ X ✓ ✓	\frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}}	5 6 7 8 9 10	\frac{1}{\sqrt{1}}	\frac{\sqrt{\sq}\sqrt{\sq}}}}}}}}}} \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}} \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}} \sqrt{\sqrt{\sqrt{\sq}}}}}}} \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}} \sqrt{\sqrt{\sqrt{\sq}}}}}}}} \sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}} \sqrt{\sqrt{\sqrt{\sq}	✓	x	<pre></pre>	x √ x √ √
6 7 8 9 10 11 12	\frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}}	\frac{1}{} \frac{1}{} \frac{1}{} \frac{1}{} \frac{1}{} \frac{1}{}	\frac{1}{\sqrt{1}} \display \frac{1}{\sqrt{1}} \dimplies \frac{1}{\sqrt{1}} \display \qu	\frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}}	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	\frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}}	5 6 7 8 9 10 11	\frac{1}{\sqrt{1}}	\frac{\sqrt{\sq}\sqrt{\sq}}}}}}}}}} \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}} \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}} \sqrt{\sqrt{\sqrt{\sq}}}}}}} \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}} \sqrt{\sqrt{\sqrt{\sq}}}}}}}} \sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}} \sqrt{\sqrt{\sqrt{\sq}	✓	x	<pre></pre>	x √ x √ √

16	√	√	✓	√	✓	✓	16	X	√	✓	✓	✓	Х
17	√	√	√	√	√	√	17	√	✓	√	✓	✓	✓
18	\	>	√	√	√	√	18	\	>	✓	√	Х	X
19	X	√	√	√	√	√	19	√	✓	X	✓	✓	Х
20	\	√	✓	✓	√	✓	20	<	\	√	✓	✓	✓
TO TA L	95%	95%	95%	100%	95%	100%	TO TA L	90%	95%	75%	80%	75%	45%
	19	19	19	20	19	20		18	19	15	16	15	9
TO TA L M3			110	6			TO TA L M4	O A					

NO	M5									
NO	SINTA 1	SINTA 2	SINTA 3	SINTA 4	SINTA 5	SINTA 6				
1	√	√	X	X	✓	Х				
2	Х	X	X	X	Х	Х				
3	√	>	X	X	X	X				
4	✓	>	X	X	X	X				
5	✓	√	√	X	Х	Х				
6	√	X	X	X	X	√				
7	Х	X	√	X	✓	Х				
8	✓	√	X	X	X	Х				
9	X	Х	Х	X	Х	Х				
10	X	Х	✓	X	X	Х				
11	X	✓	Х	✓	✓	✓				
12	X	Х	Х	X	X	Х				
13	✓	✓	Х	✓	✓	Х				
14	✓	Х	Х	X	X	Х				
15	X	Х	✓	X	✓	Х				
16	X	Х	√	X	✓	Х				
17	✓	✓	Х	✓	✓	Х				
18	✓	✓	✓	X	✓	Х				
19	Х	✓	X	✓	Х	Х				
20	X	✓	Х	X	✓	Х				
TOTAL	50%	55%	30%	20%	45%	10%				

	10	11	6	4	9	2
TOTAL M5			4	2		

STEP SALIENCES

NO	SINTA 1											SINTA 2 11 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S13												
NO	S1	S2	S3	S4	S5	S6	S7	S8	S 9	S10	S11	S 1	S2	S3	S4	S5	S 6	S7	S8	S 9	S10	S11		
1	✓	X	X	✓	✓	X	√	√	X	X	X	✓	X	✓	X	√	Х	✓	✓	X	X	X		
2	X	>	>	>	X	✓	\	X	X	X	X	X	>	X	X	>	\	✓	Х	X	X	X		
3	✓	✓	✓	✓	X	X	√	X	✓	X	X	✓	X	X	√	√	√	✓	Х	X	X	✓		
4	✓	X	✓	Х	Х	✓	✓	✓	✓	Х	X	✓	✓	✓	X	✓	√	✓	Х	X	X	Х		
5	X	X	✓	✓	Х	✓	X	Х	✓	Х	X	✓	Х	✓	X	✓	X	✓	✓	X	X	Х		
6	✓	X	✓	✓	Х	X	✓	✓	Х	X	X	✓	Х	X	X	✓	√	✓	Х	X	X	Х		
7	✓	X	✓	Х	✓	✓	✓	Х	Х	X	X	X	✓	X	X	X	√	✓	Х	X	X	Х		
8	✓	X	Х	✓	Х	X	✓	✓	Х	X	X	X	✓	X	✓	X	√	✓	✓	X	X	Х		
9	X	✓	✓	✓	Х	X	✓	X	Х	X	X	✓	Х	✓	✓	✓	√	✓	Х	Х	X	Х		
10	✓	X	X	Х	✓	X	✓	X	X	X	X	✓	Х	✓	✓	X	X	Х	Х	X	X	Х		
11	✓	X	X	✓	X	X	✓	X	X	X	X	✓	✓	X	X	X	Х	Х	✓	Х	X	Х		
12	✓	X	X	X	✓	✓	✓	X	X	X	X	X	X	✓	X	✓	✓	✓	Х	X	X	X		
13	✓	X	Х	Х	✓	X	X	Х	Х	Х	✓	✓	Х	✓	X	✓	✓	X	✓	X	X	Х		
14	✓	✓	X	Х	✓	✓	✓	✓	X	X	X	X	Х	✓	X	✓	X	✓	Х	X	X	Х		
15	✓	X	✓	✓	Х	X	✓	Х	Х	Х	X	✓	Х	✓	X	✓	X	X	Х	X	X	Х		
16	✓	✓	Х	Х	Х	✓	✓	X	Х	X	X	✓	Х	X	✓	✓	Х	✓	Х	Х	X	Х		
17	✓	X	Х	Х	✓	✓	✓	Х	Х	Х	✓	✓	✓	X	✓	✓	✓	✓	✓	X	X	✓		
18	✓	✓	✓	✓	Х	✓	✓	✓	Х	X	X	✓	Х	X	X	✓	✓	✓	Х	X	X	✓		
19	✓	✓	Х	✓	Х	X	X	X	Х	X	X	X	X	X	X	✓	X	✓	✓	X	X	Х		
20	✓	X	X	✓	✓	✓	✓	X	X	X	X	✓	✓	✓	X	✓	X	✓	✓	Х	X	✓		
TOTAL	85 %	35 %	45%	60%	40%	50%	85%	30%	15%	0%	10 %	70%	35%	50%	30%	80%	55%	80%	40%	0%	0%	20 %		
91	17	7	9	12	8	10	17	6	3	0	2	14	7	10	6	16	11	16	8			4		
NO	SINTA 3											SINTA 4												
110	S1	S2	S 3	S4	S5	S6	S7	S8	S 9	S10	S11	S1	S2	S 3	S4	S5	S 6	S7	S8	S 9	S10	S11		
1	✓	X	X	X	X	√	✓	X	X	X	X	√	√	X	✓	X	✓	Х	Х	X	X	X		
2	✓	X	✓	X	X	X	✓	X	X	X	X	✓	X	X	X	✓	X	✓	Х	X	X	X		

3	✓	Х	✓	Х	✓	Х	Х	Х	X	Х	Х	✓	X	X	X	Х	✓	✓	X	Х	Х	Х
4	✓	Х	Х	✓	Х	Х	✓	Х	Х	Х	Х	Х	✓	X	✓	X	✓	✓	X	Х	Х	X
5	✓	✓	X	✓	X	✓	✓	✓	Х	Х	Х	✓	X	X	X	X	✓	X	X	Х	Х	X
6	✓	Х	✓	X	X	✓	✓	X	Х	Х	Х	✓	✓	X	X	X	✓	X	X	X	X	X
7	✓	Х	✓	Х	✓	Х	✓	Х	√	Х	Х	✓	✓	X	X	Х	✓	X	X	Х	Х	X
8	✓	Х	✓	✓	X	Х	✓	Х	Х	Х	Х	✓	X	✓	X	Х	✓	✓	X	Х	Х	X
9	✓	Х	Х	Х	Х	✓	✓	Х	X	Х	Х	✓	✓	X	X	Х	✓	X	X	Х	Х	Х
10	√	√	Х	Х	Х	Х	✓	✓	X	Х	Х	✓	X	X	Х	√	✓	✓	X	Х	Х	Х
11	✓	Х	Х	X	✓	X	✓	Х	Х	Х	Х	✓	X	✓	X	Х	X	✓	X	Х	X	✓
12	✓	Х	Х	Х	Х	✓	✓	✓	Х	Х	Х	✓	✓	✓	Х	X	✓	✓	X	X	X	Х
13	✓	✓	✓	Х	Х	Х	✓	X	Х	Х	Х	✓	X	X	Х	✓	X	✓	X	Х	Х	✓
14	✓	✓	Х	Х	Х	X	✓	X	Х	Х	Х	✓	X	✓	Х	Х	✓	✓	X	Х	Х	Х
15	✓	Х	Х	Х	Х	X	Х	✓	Х	Х	Х	✓	✓	X	Х	✓	X	✓	X	Х	Х	Х
16	✓	Х	Х	Х	Х	✓	Х	Х	X	Х	✓	✓	X	✓	Х	X	✓	✓	X	Х	X	Х
17	✓	Х	✓	Х	✓	✓	✓	X	Х	Х	Х	✓	X	X	✓	✓	X	✓	✓	Х	Х	Х
18	✓	✓	X	✓	X	✓	X	X	X	Х	✓	✓	X	X	X	X	✓	X	X	Х	Х	X
19	✓	✓	Х	✓	✓	✓	✓	Х	X	Х	Х	✓	X	✓	Х	✓	X	✓	✓	Х	X	Х
20	✓	Х	✓	Х	Х	✓	✓	X	Х	X	Х	✓	✓	✓	Х	Х	X	✓	X	Х	X	Х
TOTAL	100 %	30 %	40%	25%	25%	50%	80%	20%	5%	0%	10 %	95%	40%	35%	15%	30%	65%	70%	10%	0%	0%	10 %
78	20	6	8	5	5	10	16	5	1	0	2	19	8	7	3	6	13	14	2	0	0	2
NO					S	INTA	5									SII	NTA 6	5				
110	S1	S2	S 3	S4	S5	S6	S7	S8	S 9	S10	S11	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11
1	X	Х	Х	Х	Х	✓	✓	✓	Х	Х	Х	✓	✓	X	Х	X	X	✓	X	Х	Х	Х
2	✓	Х	Х	✓	✓	X	✓	X	Х	Х	Х	✓	✓	X	✓	Х	✓	X	X	Х	Х	Х
3	✓	Х	X	X	✓	X	✓	X	X	Х	Х	✓	✓	X	X	X	X	✓	X	Х	Х	X
4	✓	✓	Х	Х	✓	✓	✓	X	Х	Х	Х	✓	✓	X	Х	✓	✓	✓	X	Х	Х	Х
5	✓	Х	Х	Х	✓	✓	Х	Х	X	Х	Х	✓	Х	Х	✓	X	✓	✓	Х	Х	Х	Х
6	✓	Х	Х	Х	Х	✓	✓	Х	X	Х	Х	✓	Х	Х	✓	X	✓	✓	✓	Х	Х	Х
7	✓	✓	Х	Х	Х	✓	Х	Х	X	Х	✓	✓	✓	Х	✓	X	Х	✓	Х	Х	Х	Х
8	✓	✓	✓	Х	Х	Х	Х	Х	X	Х	Х	✓	✓	Х	Х	X	Х	✓	Х	Х	Х	Х
9	✓	✓	Х	Х	Х	Х	✓	Х	X	Х	Х	✓	Х	Х	✓	X	Х	✓	Х	Х	Х	Х
10	✓	Х	Х	Х	✓	Х	Х	Х	X	Х	Х	✓	Х	Х	✓	X	Х	✓	Х	Х	Х	Х
11	✓	Х	✓	Х	✓	✓	✓	✓	X	Х	Х	✓	✓	Х	✓	X	✓	✓	Х	✓	X	Х
12	Х	Х	✓	Х	Х	✓	✓	Х	X	X	Х	✓	Х	Х	Х	✓	Х	✓	Х	Х	X	X

13	√	Х	Х	Х	√	Х	√	Х	√	Х	Х	√	✓	Х	Х	Х	√	✓	X	X	X	X
14	√	Х	✓	X	Х	X	✓	Х	Х	Х	Х	✓	X	Х	Х	✓	✓	✓	Х	Х	X	X
15	Х	Х	✓	Х	✓	✓	✓	Х	Х	Х	√	✓	Х	Х	Х	✓	Х	✓	Х	Х	X	X
16	√	X	✓	✓	√	X	√	✓	Х	Х	Х	Х	X	Х	Х	Х	✓	<	Х	Х	X	X
17	√	Х	X	X	X	✓	\	Х	Х	Х	√	✓	X	Х	✓	X	✓	✓	X	Х	X	X
18	√	X	X	X	Х	✓	√	Х	✓	Х	√	✓	✓	✓	Х	Х	Х	<	Х	Х	X	X
19	√	Х	X	✓	✓	✓	✓	Х	Х	Х	Х	✓	Х	Х	Х	Х	Х	✓	Х	Х	X	X
20	√	Х	✓	Х	✓	Х	✓	✓	Х	Х	Х	✓	Х	Х	✓	✓	Х	✓	Х	Х	X	X
TOTAL	85 %	20 %	35%	15%	55%	55%	80%	20%	10%	0%	20 %	95%	45%	5%	45%	25%	45%	95%	5%	5%	0%	0%
79	17	4	7	3	11	11	16	4	2	0	4	19	9	1	9	5	9	19	1	1	0	0

LINGUISTIC FEATURES

MOVE 1															
SP															
31	11	318	2	30	0	3	0	81	314						
	MOVE 2														
SP															
25															
	MOVE 3														
SP															
72	12	220	0	5	0	5	2	99	217						
			N	ИOVE	E 4										
SP	SF	SPR	PP	PRP	PC	PRC	FC	P	A						
48	2	82	0	2	0	0	0	11	123						
			N	ИOVE	E 5										
SP	SF	SPR	PP	PRP	PC	PRC	FC	P	A						
11	1	34	0	1	0	0	0	13	34						

TENSES

			SIN	TA 1				Ş	SIN	ГА 2			SINTA 3								
	Pr	%	P	%	Ft	%	Pr	%	P	%	Ft	%	Pr	%	P	%	Ft	%			
M1	73	86%	10	12%	2	2%	50	89%	4	7%	2	4%	55	86%	8	13%	1	2%			
M2	2 15 79% 4 21% 0 0%							63%	6	32%	1	5%	10	59%	7	41%	0	0%			
М3	3 47 73% 15 23% 2 3%						44	79%	11	20%	1	2%	29	64%	15	33%	1	2%			
M4	22	71%	9	29%	0	0%	16	52%	15	48%	0	0%	12	57%	9	43%	0	0%			
M5	10	71%	3	21%	1	7%	7	64%	4	36%	0	0%	4	57%	3	43%	0	0%			
			SIN	TA 4			SINTA 5							SINTA 6							
	Pr % P % Ft %				%	Pr	%	P	%	Ft	%	Pr	%	P	%	Ft	%				

M1	56	89%	3	5%	4	6%	44	92%	3	6%	1	2%	73	92%	5	6%	1	1%
M2	16	84%	1	5%	2	11%	13	68%	3	16%	3	16%	14	74%	4	21%	1	5%
М3	35	71%	12	24%	2	4%	37	71%	10	19%	5	10%	38	76%	9	18%	3	6%
M4	12	55%	8	36%	2	9%	16	84%	3	16%	0	0%	6	60%	4	40%	0	0%
M5	3	75%	1	25%	0	0%	9	100%	0	0%	0	0%	2	100%	0	0%	0	0%

VOICES

	SINTA 1				SINTA 2				SINTA 3					SIN	ГΑ	4		SIN	ГΑ	5	SINTA 6			
	A	%	P	%	A	%	P	%	A	%	P	%	A	%	P	%	A	%	P	%	A	%	P	%
M1	61	70%	26	30%	47	84%	9	16%	52	81%	12	19%	53	84%	10	16%	42	88%	6	13%	61	77%	18	23%
M2	16	84%	3	16%	14	74%	5	26%	12	71%	5	29%	17	89%	2	11%	16	84%	3	16%	14	74%	5	26%
М3	45	70%	19	30%	40	71%	16	29%	31	69%	14	31%	38	78%	11	22%	27	52%	25	48%	36	72%	14	28%
M4	29	94%	2	6%	25	81%	6	19%	21	100%	0	0%	21	95%	1	5%	18	95%	1	5%	9	90%	1	10%
M5	12	86%	2	14%	8	73%	3	27%	7	100%	0	0%	1	25%	3	75%	5	56%	4	44%	1	50%	1	50%

https://bit.ly/appendices-skripsi-AnnisaJC