CHAPTER III

RESEARCH METHODOLOGY

This chapter describes method used in this study to answers the two questions previously stated in chapter one. The chapter covers research design, instruments, hypothesis, population and sample, research procedures and data analysis.

3.1 Research Methodology

This research was conducted based on quantitative method to conclude the data. In doing so, this research used quasi experimental method since it was aimed to investigate cause and effect relationship. Quasi experimental design is an adaptation of true experimental design where one of the elements is missing. Those elements could be manipulation, randomization or control group. This quasi experimental design was used to anticipate those elements that could not be fulfilled. Therefore, the researcher decided to use quasi experimental design to find out the significance of using songs in improving the students' listening ability. While, experimental method applied to test the hypothesis served, for that reason, this research takes two classes; the first class served as experiment class and the second class served as control class. Later, the result of the research was described by putting the description of the result data.

3.1.1 Research Design

The design of the research was quasi-experimental design, according to

Henrichson (1997), a quasi-experimental has some sort of control and experimental group, but the groups weren't randomly selected. The group was classes that have been built or naturally assembled before the research conducted. The groups were given pre and posttest nonequivalent research design. Hatch and Farhady (1982, p. 22) stated that the pretest-posttest nonequivalent-groups design is often used in classroom experiments when experimental and control groups are naturally assembled groups as intact classes which may be similar. For that reason, this research involved two classes which are assigned as control and experimental groups.

The formula is represented as follows:

G1 T1 X T2
 G2 T1 T2

Based on the design illustrated above, two classes were selected as experimental and control groups. (G1) is experimental group which was given treatment (X) and (G2) is control group which was not given treatment. Pretest (T1) was conducted before the use of song as teaching strategy given to the experimental class as the treatment, and then at the end of the treatment, posttest was held to assess students' listening skills.

3.1.2 Variables

There were two variables in this study. The first variable is dependent variable and the second is independent variable. The dependent variable in this study is the students' listening skill. While, the use of songs as the teaching
strategy was selected as independent variable and became the major variable to be investigated.

3.2 Hypothesis

The study begins with null hypothesis $\left(H_{0}\right)$ where both classes; experimental and control class are similar in listening ability.

$$
H_{0}: \quad \mu_{\text {experimental }}=\mu_{\text {control }}
$$

There is no difference between experimental class and control class in the mean adjustment level. It means that the mean adjustment level of experimental and control classes are not different. By using null hypothesis, every possibility of the result of the study can be shown.

3.3 Population and Sample

The main criterion of the population and sample of this research is the school where the students have been learning which covers listening. It helped the researcher to use song in the experiment as the media of teaching listening. Because of that, the students of a public Junior High School in Sumedang were chosen as the sample of the research.

3.3.1 Population

The population of the study is the second grade students of a Junior High School in Sumedang. They are chosen because they have been learning English which covers listening.

3.3.2 Sample

Since there were two classes conducted for this research, two classes were chosen for this research by applying purposive sampling. The researcher chooses the classes which exist before the research being conducted. There were control class which is taken by 8 -E and 8-F took part as experimental class. Sixty students were involved in the study. Furthermore, both classes were tested by pre and posttest. During the experiment, the experimental group was given several treatments in period of six meetings.

3.4 Data Collection

3.4.1 Research Instruments

Before applying the first test instrument (listening test) to both classes, the value of validity and readability were sought. In doing so, fifty items of multiple choice items were tested to another class in order to gain questions items which are valid and reliable.

The first instrument of the research is listening comprehension test which aims to measure the students' listening ability. As mentioned earlier, at the beginning of the study, the listening test comprises fifty items of multiple choices. After analyzing it validity, the listening test was narrowed into forty three multiple choices item which was tested to both experimental and control group. This listening comprehension test was given to both classes as pre and posttest. The
purpose of pretest is to measure the students' listening ability before the treatment, and posttest is used to measure the students' listening ability after the treatment using songs.

The following is the syllabus of Junior High School in listening that were taken as consideration in developing test items (see table 3.1)

Table 3.1

Syllabus of Second Grade of Junior High School

\(\left.\left.$$
\begin{array}{|l|l|l|}\hline \text { Aspect } & \text { Competence Standard } & \text { Basic Competence } \\
\hline \text { Listening } & \begin{array}{l}\text { Understanding the meaning of simple } \\
\text { transactional and interpersonal } \\
\text { conversation to interact with their } \\
\text { surroundings }\end{array} & \begin{array}{l}\text { 1. Responding expressions } \\
\text { of asking, giving and } \\
\text { refusing services. }\end{array} \\
\text { 2. } \begin{array}{l}\text { Responding expressions }\end{array} \\
\text { of asking, giving and } \\
\text { rejecting information. } \\
\text { 3. Responding expressions }\end{array}
$$\right\} \begin{array}{l}of asking, giving and

rejecting opinion.

4. Responding expressions\end{array}\right\}\)| of asking, accepting and |
| :--- |
| rejecting offers. |

3.4.2 Questionnaires

In this research, the researcher used questionnaire in the form of rating scales. Rating scales questionnaire is very useful for the researcher for its effectiveness in building degree of sensitivity of response which will generate numbers (Cohen et al. 2007, p. 325). A questionnaire used in this research was basically used to gain information from the respondents.

The purpose of the researcher in using questionnaire is to know difficulties faced by the students in listening comprehension using songs. This would also help the writer in providing a suggestion and to support the result of this study.

3.5 Research Procedures

3.5.1 Organizing Teaching Procedure

The researcher was performed as the teacher in both of control and experimental group. The researcher was conducted two steps; first, the researcher prepares appropriate materials for teaching and learning process during the treatment. Second, the researcher organizes teaching procedures in both of control and experimental groups.

In the experimental group, the teaching materials and procedures were highly related to the implementation of song as a strategy in teaching listening. While in the control group, the combination of listening through songs, and lecturing learning strategy were applied.

Table 3.2

Research Schedule

3.5.2 Administering Try-out Test

Before the instruments were applied in the research, the researcher was administered try out test to investigate the validity and reliability of the instrument. Try-out test consisted of fifty multiple choice questions related to the simple transactional dialogue based on basic competence in syllabus. The test materials were adopted from internet-based listening test available at www.esllab.com. The try-out test was conducted in class VIII of Junior High School in Sumedang before the experimental teaching began.

3.5.2.1 Validity test

To analyze validity of the test, this research was used external validity analysis by correlating the students' score of listening test with students' summative score of English which were taken from their mid-term report book. To correlate them, the formula of Pearson Product Moment Correlation Coefficient Values is used.

$$
\begin{equation*}
r=\frac{N \sum x y-\left(\sum x\right)\left(\sum y\right)}{\sqrt{\left[N \sum x^{2}-\left(\sum x\right)^{2}\right]\left[N \sum y^{2}-\left(\sum y\right)^{2}\right]}} \tag{Calmorin,1997,p.125}
\end{equation*}
$$

Where r is Pearson Product Moment Correlation Coefficient Values, N is number of students who are analyzed, x is students' listening score (first variable) and y is students' summative score (second variable). Afterwards, every item on the instrument was also analyzed by using Pearson Product Moment Correlation Coefficient Values gained by distributing the data to statistical program; Anates v. 4 to determine correlation index for every items. This analysis was conducted through correlating every single item of instrument (x) with total score of instrument (y). Next, the r is interpreted as follows:

Table 3.3 Index of Validity Level

Coefficient Interval (r)	Validity Level
$0.800-1.000$	Excellent (Ex)
$0.600-0.799$	Good (Gd)
$0.400-0.599$	Satisfying (St)
$0.200-0.399$	Poor (Pr)
$0.000-0.199$	Very Poor (Vp)

(Adopted from Riduwan 2004:110)

3.5.2.2 Reliability test

This research used KUDER RICHARDSON-20 (KR-20) method to analyze reliability of instrument. The purpose of using this method is to gain a higher reliability value, since the result of $K R-20$ tends to give a higher value than the other methods such as KR-21, Anova Hoyt, and Alpha. (Arikunto 1999). Every single right answer is valued 1 and every wrong answer is 0 .

KUDER RICHARDSON-20 (KR-20) formula:

$$
\begin{aligned}
& \qquad r_{11}=\left(\frac{K}{K-1}\right)\left(\frac{s^{2}-\sum p q}{s^{2}}\right) \\
& r_{11}=\text { Internal reliability coefficient for all items } \\
& K=\text { sum of question item } \\
& P \quad=\text { proportion of subjects who answer right } \\
& q=\frac{\text { proportion of subjects who answer wrong }(q=1-p)}{N(\text { number of respondents })} \\
& s^{2}=\text { variance total } \quad s^{2}=\frac{N \sum y^{2}-\left(\sum y\right)^{2}}{N(N-1)}
\end{aligned}
$$

Afterward, the value of r_{11} is compared with index of Pearson Product Moment Correlation Coefficient Values to see whether the value is reliable or not.

3.5.3 Treatments

Two first grade classes in Junior High School in Sumedang, VIII F as the experimental group and VIII E as the control group, were selected as the subject of the research. The experimental group was exposed to the song strategy in listening while the control group was taught by using conventional technique in teaching listening.

3.5.4 The Result of the Test

Before using the instruments to the targeted respondents, the validity and reliability of the instrument was sought. The result is shown as follows.

3.5.4.1 Validity and Reliability Instrument

The first step of the experiment is administering validity and reliability of the tests. As the researcher mentioned earlier, this research used external validity to seek correlation value. The test comprises of fifty question items which applied to the respondents, students of a public junior high school in Sumedang, on July 23, 2012. From the calculation, the instrument is valid in level 0.01 which has minimum value 0.393 with $\mathbf{r}=\mathbf{0 . 7 9 0 1 3 5 9 5 3}$

The second step is instrument item validity; the instrument item was analyzed using SPSS v.20. From the calculation it is shown that:

Table 3.4 Index of Validity for Question Items

Coefficient Interval (r)	Validity Level	Question Item number
$0.800-1.000$	Excellent (Ex)	-
$0.600-0.799$	Good (Gd)	-
$0.400-0.599$	Satisfying (St)	$1,16,37$
$0.200-0.399$	Poor (Pr)	$2,6,10,13,17,20,22,23,24,26,31$, $32,33,35,36,41,43,46,50$
$0.000-0.199$	Very Poor (Vp)	$4,5,7,8,9,11,12,14,15,19,21,25$, $27,28,29,42,45,47$

$<0.00-0.000$	Invalid	$3,34,38,39,40,48,49$.

(Adopted from Riduwan 2004: 11)
The calculation shows that from fifty question items of listening comprehension tested, there are forty three items categorized as valid and seven items categorized as invalid. So that forty three items of listening comprehension test are taken as the instrument of this research.

Furthermore, every question item was analyzed using $K R-20$. From the calculation, it is shown that the reliability value $\left(r_{11}\right)$ is 0.30423 . This result is reliable at level .001 which has minimum value 0.257 . It can be concluded that the selected question items which have higher validity and reliability than the minimum value, is presumed can be used to measure students' ability in listening.

3.5.5 Listening Test (Pretest and Posttest)

As the researcher mentioned earlier, 30 question items were taken as the instrument to measure students' ability in listening. The question items were taken from three question items which are classified as satisfying items, nineteen question items which are classified as poor items, and nine question items which are classified as very poor items. Those question items can be seen on Appendix. Then, the selected question items were given to the respondents as pre-test and post-test.

The aims of pretest are to investigate the students' initial ability and to the equivalence between the groups. In doing so, the researcher used t -test formula, Case II studies or independent sample test. In order to meet the requirement of t
test formula, there are three conditions that must be done. In line with this statement, Hatch \& Farhady (1982, p. 114) states that there are three assumptions underlying the t-test, among other: (1) The subject is allotted to one group in experiment, (2) The variances' scores are equal and normally distributed, and (3) The scores on the independent variable are continuous. For that reason, the researcher did the normality distribution and variance homogeneity test before analyzing the data using t-test formula.

3.5.6 Normality of Distribution Test

In this study, the researcher used the SPSS 20 for windows to analyze the normally distribution of the scores with the steps as follows:

1. Stating the hypothesis and setting the alpha level at 0.05 (two tailed test)
$\mathrm{H}_{0}=$ the scores of the experimental and control group in pretest are not normally distributed
2. Analyzing the normality distribution using Kolmogrov-Smirnov formula in SPSS 20 for windows.
3. Comparing the Asymp Sig with the level of significance to test the hypothesis.

If the Asymp Sig < level of significance (0.05), then the null hypothesis accepted; the scores are not normally distributed. While, if the Asymp Sig > level of significance (0.05), then the null hypothesis is rejected; the scores are normally distributed.

3.5.7 The Homogeneity of Variance Test

In analyzing the variance homogeneity of the scores, the researcher used the Levene Test formula in SPSS 20 for window. The analyzing of variance homogeneity follows the steps below:

1. Stating the hypothesis and setting the alpha level at 0.05
$\mathrm{H}_{0}=$ the variance of the experimental and control group in pretest are not homogenous

After the null hypothesis stated, then the research continued by analyzing the variance homogeneity using Levene Test formula in SPSS 20 for windows.
2. Comparing the probability with the level significance for testing the hypothesis.

If the probability < level of significance (0.05), then the null hypothesis is accepted; variance of the experimental and control group are not homogenous. While, if the probability > the level of significance (0.05) the null hypothesis is rejected; variance of the experimental and control group are homogenous.

3.5.8 The Calculation of t-test

After analyzing the normally distribution and the homogeneity of variance, the next step of the research is the t-test calculation (The calculation were performed in SPPS 20 for window), the calculation is as follow:

1. The calculation started by stating the hypothesis and setting the alpha level at 0.05 (two tailed test)
$\mathrm{H}_{0}=$ there is no significant difference between pretest and posttest scores in experimental group
2. The second step is finding the t value
3. And the last step is done by comparing the probability with the level of significance for testing the hypothesis. If the probability is more than or equal to the level of significance, the null hypothesis is accepted; the two groups are equivalent. While, if the probability is less than the level of significance, the null hypothesis is rejected; there is significant difference between pretest and posttest scores in experimental group.

3.5.9 Data Analysis on the Posttest

In calculating the posttest data, the researcher used the same steps as in calculating the pretest data. The researcher used t-test formula, Case II studies or independent sample test.

3.5.10 Data Analysis on the Experimental and the Control Group Scores

In analyzing the data, the researcher analyzed the pretest and posttest scores of experimental and control group using the matched t-test to investigate whether or not the difference of the pretest and posttest means of each groups is significant. In doing so, the steps are as follows:

1. The first step is stating the hypothesis and setting the alpha level at 0.05 (two tailed test)
$\mathrm{H}_{0}=$ there is no significant difference between the pretest and posttest scores

2. The second step is finding the t value

3. The last step is comparing the probability with the level of significance for testing the hypothesis. If the probability is smaller than the level of significance, the null hypothesis is accepted; there is no significant difference between pretest and posttest scores. While, if the value of probability is larger than or equal to the level of significance (0.05), then the null hypothesis is rejected; there is a significant difference between pretest and posttest scores. (The calculations were analyzed by SPSS 20 for window).

The scores of pre- and post-tests for the experimental group were also being analyzed to find out the level of listening comprehension mastery before and after learning song strategy or before and after treatment. Computing the average of each test was necessary to find out the mastery of listening comprehension. In doing so, the average scores of each test were calculated, so the mastery of each test will be known. The formula to compute average is as follows:
$M x=\frac{\sum x}{N}$

Where:

Mx
$=$ average x (before treatment)

$$
\begin{array}{ll}
\sum x & =\text { the sum of } \mathrm{x} \text { scores (pretest) } \\
\mathrm{N} & =\text { the number subjects }
\end{array}
$$

And

$$
M y=\frac{\sum y}{N}
$$

Where:

After finding the average of each test, then the next step is interpreting what it means. The interpretation of the average lead us to knowing to what extent the mastery of listening comprehension before and after treatment will be. In line with this, Arikunto (1999) classifies the range of scores with its probable class performance. The classification is as the following:

Table 3.5

Classification of the Range of Score

